)

HYTINNYHSHY >

TECHNOLOGY —'

-
©w
w
(4]
@

S
5
2
5
o
m
02}_
%
Q
«\

EEE — 2104
Digital Circuit Design Lab

AHSANULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY

DEPARTMENT
OF
ELECTRICAL AND ELECTRONIC ENGINEERING

EEE- 2104

Digital Circuit Design Lab

Page 2 of 109

Edition 2025

Digital Circuit Design Lab

Table of Contents

Table Of CONLENLS c...cuueiiireiiiiiriiitniniteiiitncssnencsssencssstecssssessssessssssesssssessssssssssnsssssesssssesssssssssssssssses 3
Experiment: 1........cccevvvnniecsccnnneenens 4
Experiment: 2........cccovvvunrecsccnnneccens 12
CAD System........eeeeerccnerccscnnnees .16
Experiment: 3........cccceverervunccsnncene 43
Experiment: 4..........ccoeverervueecivnncene 50
Experiment: 5........ccccevvvievvunecrvancene 57
Experiment: 6.........ccceeuveercurecsnneene 70
Experiment: 7.....ccccceevveicrcueccscancens 77
Experiment: 8........cccovvvuerecncrnnnicnens 87
Experiment: 9.........coovueevueeineenene. 93
Experiment: 10.........coveevveeruensnenee 96
ANNEXURE Iccucevvvuieienncercnnnnne 99
ANNEXURE IL.......cccvirivernsninsnnenns 103
REFERENCE..........enienverennenn. 109

Page 3 of 109

Experiment: 1

Experiment name: /ntroduction to difterent digital ICs.

Introduction:

Digital Circuit Design Lab

In this experiment you will be introduced to different digital ICs that will be used in this digital
lab to perform different functions and also the function of each IC. You are asked to memorize
the following associated with each IC.

1. IC number

2. IC name
3. Total number of pins
4. V. pin number
5. Ground pin number
IC number IC Name Gate Name Gate Schematic view
7404 Hex Inverter NOT/INVERTER ! >foi
1
7408 Quad 2-input AND AND 5 3
7408
, —
7432 Quad 2-input OR OR) j N\
T 7432
1
7400 Quad 2-input NAND NAND 2 3
7400
, —
7402 Quad 2-input NOR NOR 3 j !
T 7402
. —
7486 Quad 2-input XOR XOR) j) \ 2
T 7486

Page 4 of 109

Digital Circuit Design Lab

The INVERTER/NOT Gate
AlX .
A X K X=A
110 Boolean expression
A :: ¥ Truth table
0=LOW
1 = HIGH

Distinctive shape symbols

The output of an inverter is always the complement (opposite) of the input.

The AND Gate

S
NEpNgipigh
Truth table 25 L F{:

X=AB 0=LOW
Boolean expression 1 =HIGH

A_
D
B_

Distinctive shape symbal

r—tr—toow
—_ O — O
—_ O O O

Pulsed Waveforms

The output of an AND gate is HIGH only when all inputs are HIGH.

A B C[X

A 0 0 00
i - o0 1|0
B X 0 1 0|0
o I o1 1|0
1 0 0o

- 10 1]0

X = ABC O
11 111

3 Input AND Gate

Page 5 of 109

The OR Gate

A

X
b
Distinctive shape symbaol

X=A+B

Boolean expression

»—A»—Aoow
—_ o —~ O|p
»—A>—A>—ao><

Truth table

0=LOW
1 = HIGH

Digital Circuit Design Lab

A
ki
B

SEplpln
o

Pulsed Waveforms

Al

The output of an OR gate is HIGH whenever one or more inputs are HIGH.

C

A
A 0
0

B x|
C 0
1

X = A+B+C 1

1

1

__hDG__LDDm

0
1
0
1
0
1
0
1

The NAND Gate

D
X
B_

Distinctive shape symbol

L

3 Input OR Gate

Page 6 of 109

Digital Circuit Design Lab

]

x=AB Niniginigh
L

==l
—_ o — Ofp
o»—»—A»—AM

Boolean expression

Truth table B .

0=LOW — | 1
K 1 1 1

1 = HIGH 5 5 : 5 :

Pulsed Waveforms

The output of a NAND gate is HIGH whenever one or more inputs are LOW.

A B CX

A/ 0 0 01
00 1|1

® }xn1n1
c — 01 11
- 10 0/1

X = ABC 10 111
11 01

11 10

%

®x Fr D O

L

3 Input NAND Gate
The NOR Gate

s e) e =) > Dex

Distinctive shape symbal

Page 7 of 109

Digital Circuit Design Lab

— — O OoOlW
—_ o —~ O
S o O —|H

X=A+E ol =
Boolean expression IIIJ_II:
Truth table X[il r

0=LOW
1 = HIGH

Pulsed Waveforms

The output of a NOR gate is LOW whenever one or more inputs are HIGH.

o m

>
—Lﬂ—‘dDDDDP
_n._kDD_x_\DGm

= 0D0=0=0-=0|0

oODOoOODDOoO0D O =X

3 Input NOR Gate

Exclusive-OR Gate

X=A®B
Boolean expression

Distinctive shape symbal

b R

e
e ==11""]
—_ o — Ofp
S = = O

Truth table

0=LOW
1 = HIGH

Page 8 of 109

The output of an XOR gate is HIGH whenever the two inputs are different.

Equipment:
1. Trainer Board

Pulsed Waveforms

2. 1C 7400,7402,7404,7408,7432,7486

3. Microprocessor Data handbook

Procedure:

Digital Circuit Design Lab

1. Take any of the following ICs. From microprocessor data handbook find the name of the IC,
total number of pins that it has, V_, pin and ground pin.

IC Number IC name Total pin V.. pin Ground pin
7400 NAND 14 14 7
7402 NOR 14 14 7
7404 NOT 14 14 7
7408 AND 14 14 7
7432 OR 14 14 7
7486 XOR 14 14 7

Page 9 of 109

Digital Circuit Design Lab

Ve
14 13 1|2 11 1(|) 9 EI;
D 7404

.

<7

) ~
| |

4 5 6 7L GND

1 1 1 | ;__l_ aND 12 4 L
1 2 3 4 5 6 =
Ve Vee
LEILL 1312 11 10 9 8 LEI4 13 12 11 10 9 8
| | | | i_ | |
) 7432) 7400
| | | |1 | | | |1
1 2 3 4 5 6 7 L GND 1 2 3 4 5 6 7 L GND
Vee VCC
‘EI4 13 1211 10 9 8 141312 11 10 9 8
| | | | | | | |
7402) 7486

D

]
45 6 7L GND

2. Note the number of gates each IC has from the handbook.

3. Now fill up the following table:

Input | Input | 7404 7432 7402 7486 7408 7400
A B NOT OR NOR XOR AND NAND
Y=A4 | Y=A+B | Yy=4+B | Y=A®B | Y=4B Y = AB
0 0
0 1
1 0
1 1

Page 10 of 109

Digital Circuit Design Lab

Implementation Technology:

The first schemes for building logic gates with MOSFETs became popular in the 1970s and
relied on either PMOS or NMOS transistors. Here, we will learn how logic circuits can be built
using NMOS. Such circuits are known as NMOS circuits. Here we will use the concept of
transistor switching to understand the basic principle of logic gates implementation.

Vop Vbp
A
>d
£3
v, _
Xy] > Vf
. = e N
(@) NOT Gate (b) NAND Gate (c) NOR Gate

Report:

1. How can you make a three input AND/OR/XOR gate with a two input AND/OR/XOR
gate?

2. Is it possible to make a three input NAND/NOR gate with two input NAND/NOR gate?
Justify your answer.

3. Design AND & OR gate using N-MOSFET & Resistance.

Page 11 of 109

Digital Circuit Design Lab

Experiment: 2

Experiment name: Introduction to Combinational Logic and K-map Minimization.

Introduction:

Logic design basically means the construction of appropriate function, presented in Boolean
algebraic form, then edification of the logic diagram, and finally choosing of available ICs and
implementing the IC connection so that the logic intended is achieved. The efficiency in
simplifying the algebra leads to less complicated logic diagram, which in the end leads to easier
IC selection and easier circuit implementation.

Caution:

1. Remember to properly identify the pin numbers so that no accidents occur.
2. Properly bias the ICs appropriate voltages to appropriate pins.

Equipment:

1. Trainer Board
2. IC 7404,7408,7432

Job: x=x.1

Implement of function —

x+x' =1

X+X=X

f=AB+BC'+CA
= AB.1+ BC'.1+ CA.1
=AB(C+C")+BC'(A+A")+CA(B+B')
= ABC + ABC'+ ABC'+ A'BC"'+ ABC + AB'C
= ABC + ABC'+ A'BC'+ AB'C
= A'BC'+ AB'C+ ABC'+ ABC

= m, +ms +mg +m,

=> m(2,5,6,7)

Page 12 of 109

Digital Circuit Design Lab

Truth Table:
Input Output
Row Minterm
A| B | C f
0 mo=A"B' C’ 0 0 0 0
1 m;=A'"B'C 0 0 1 0
2 m=A'"B C’ 0 1 0 1
3 my=A'B C 0 1 1 0
4 ms=A B'C’ 1 0 0 0
5 ms=A B'C 1 0 1 1
6 mg=A B C’ 1 1 0 1
7 m;=A B C 1 1 1 1
Circuit Diagram:

7408

f=AB+BC'+ CA

Page 13 of 109

Digital Circuit Design Lab

k-Map:
—
BC 00 01 11 10
AV
0 0 0 0 | 1 |
1 0 1 1 | 1 l
AC BC’
f=AC +BC'
Circuit Diagram:
A B C
[
2

Page 14 of 109

Digital Circuit Design Lab

Procedure:

1. Draw logic diagram to implement the function.

2. Select ICs from the equipment list.
3. Note the output logic for all combinations of inputs.
4. Now fill out the truth table for that function.
5. Simplify the function in POS and in SOP form using K-map.
6. Repeat step-1, 2 and 3.
Report

1. f(A,B,C,D)=Ym (0, 1,4,5,12,13, 14)

2. f(A,B,O)=[IM(0,1,3,4)

For both the functions do the following

» Simplify the function in POS form and in SOP form.

* Draw logic diagram to implement the function.

* Select ICs and mention the pin number in the diagram.
* Show the truth table of the system.

Page 15 of 109

Digital Circuit Design Lab

CAD System
Experiment name: Introduction to FPGA, Quartus Software & Vertlog HDL

Svstem Synthesis:

e CAD Tool: Quartus II (Version - 13.0spl Web Edition)
e Hardware Description Language (HDL): Verilog
e Development Board: Altera FPGA Board

Procedure:

For installation procedure, go to Annexure I.

Design Flow:

1. Start: Project

2. Design: Schematic Verilog

3. Verification: Simulation FPGA Board
Function Implementation:

Here, we are going to implement the following function —

f=AC +BC’

Page 16 of 109

Digital Circuit Design Lab

Project in Quartus II:

P1. Open Quartus I1 13.0 sp1 web edition.

P2. Go to File->?New Project Wizard.

File Edit WView Project Assignments Processing

1 Mew... Ctrl+M

5 Open... Ctrl+0 s
Close Ctri+F4

=] New Project Wizard...

% Open Project... Ctrl+]
Save Project
Close Project

P3. The following window will open up. Click Next.
€ New Project Wizard bt

Introduction

The New Project Wizard helps you create a new project and preliminary project settings, including the following:

Project name and directory

Mame of the top-level design entity
Project files and libraries

Target device family and device
EDA tool settings

LR

You can change the settings for an existing project and specify additional project-wide settings with the Settings command
(Assignments menu). You can use the various pages of the Settings dialog box to add functionality to the project.

(] Don't show me this introduction again

< Back Finish Cancel Help

Page 17 of 109

Digital Circuit Design Lab

P4. In the next window that appears, change the default working directory to your working
directory (e.g. E:\Sumit\DLD) and give a name to this project.

When giving name of project and top-level design entity, keep in mind these two important

points —
** Space in the name is not allowed.

** It is recommended that top-level design entity file should have the same name as the

name of the project.

&4 New Project Wizard X

Directory, Name, Top-Level Entity [page 1 of 5]

What is the working directory for this project?
D:fSumit

What is the name of this project?
SOFfund

What is the name of the top-level design entity for this project? This name is case sensitive and must exactly match the entity
name in the design file.

SOPfunc

Use Existing Project Settings...

< Back Finish Cancel Help

P5. In the next window, you may include files to your project, which we will demonstrate later,
for now, click Next.

Page 18 of 109

Digital Circuit Design Lab

P6. In the following window, select Cyclone I1 under Device family and type EP2C35F672C6
in Name filter. Double click on it under Available devices so that Specific device selected in
“Available devices’ list is selected under Target Device.

@; New Project Wizard

Family & Device Settings [page 3 of 5]

Select the family and device you want to target for compilation.
You can install additional device support with the Install Devices command on the Tools menu.

Device family Show in 'Available devices' list

Family: Cyclone I - Package: Any T
Devices: All Pin count: Any v
Target device Speed grade: Any M
() Auto device selected by the Fitter e EF 2 3567206
Q) sSpecific device selected in 'Available devices' list Show advanced devices HardCopy compatible only &
Other: nfa

Available devices:

LEs User I/0s Memory Bits Embedded multiplier 9-bit elemen

Companion device =)
HardCopy:

Limit DSP & RAM to HardCopy device resources

< Back Finish Cancel Help

P7. Click Finish. This completes the steps for creating a project file.

Page 19 of 109

Digital Circuit Design Lab

Block Diagram/Schematic Design:

B1. Go to File 2New. Sclect Block Diagram/Schematic File and click OK.

&4 New X

Mew Quartus II Project
~ Design Files
AHDL File
|Block Diagram/Schematic File
EDIF File
Qsys System File
State Machine File
SystemVerilog HDL File
Tel Script File
Verilog HDL File
WHDL File
~ Memory Files
Hexadecimal (Intel-Format) File
Memory Initialization File
~ Verification/Debugging Files
In-System Sources and Probes File
Logic Analyzer Interface File
SignalTap II Logic Analyzer File
University Program VWF
~ QOther Files
AHDI Tneclude File

A blank block diagram window will appear.

Page 20 of 109

Digital Circuit Design Lab

B2. To implement the circuit, we will need an AND, OR & NOT gate. From the menu bar, click
on icon for Symbol Tool, or alternatively double clock on the blank schematic window.

T

B3. The following window will appear. Under Libraries, click on the plus icon beside
c:/altera/...

7 Symbol X

Libraries:

» & c:falteraf13.0spl/quartus/libra

Name:

[] Repeat-insert mode

[Insert symbol as block
Launch MegaWizard Plug-In

MegaWizard Plug-In Manager...

B4. After expanding the plus icon, you will see the following library directories:

Libraries:

w [c:faltera/13.0spl/quartus/libran
> B2 megafunctions
» 0 others
> B primitives

Page 21 of 109

Digital Circuit Design Lab

B5. Click on the plus sign beside primitives.

Libraries:

v [c:faltera/13.0spl/quartus/lit

> 0 megafunctions

» 20 others

v
» 2 buffer
> & logic
> €1 other
> 1 pin

b ———

B6. Different Logic Gates (AND, OR, NOT etc.) are under logic directory, input and output pins
are under pin directory, and flip-flops are under storage directory. Go to logic directory and
select and2 from the list for a 2-input AND gate and click OK.

Libraries:

~w [c:/alteraf13.0spl/quartus/lit
» 2 megafunctions I
» 2 others
~ [primitives
> & buffer
v & logic
tF andil2

F1 - dm

B7. Then go to block diagram window and place the symbol on it.

B8. Do the same for the OR & NOT gate.

Page 22 of 109

Digital Circuit Design Lab

B9. Now, click on the drop-down menu on Pin Tool at toolbar and select Input/Output pins.

B10. You can click on the pin names and rename them.
:}j Pin Properties X

General Format

To create multiple pins, enter a name in AHDL bus notation
(For example: "name[3..0]"), or enter a comma-seperated list of names.

Pin name(s):

Default value: WVCC -

Page 23 of 109

Digital Circuit Design Lab

B11. Now, in the block diagram window, move cursor to input/output pins on gates and you will
see wiring icon showing up, or you can select Orthogonal Node Tool from the left menu bar.

-

B12. Now, wire the gates and pins to construct the circuit. When completed, it should look like
the following —

JREIT :

B13. Click on start compilation button on the top menu bar.

-

B14. Click Yes, if you are prompted to save the block diagram.

Cuartus |l o

| Save changes to Blockl.bdf*?

Yes Mo Cancel

Page 24 of 109

Digital Circuit Design Lab

B15. File name of top-level design entity is recommended be the same as that of the project
name (e.g. SOPfunc). Click Save.

Save As X
Save in: I Sumit j - £F E2v
e
/\ Name Date modified Type
o db 28-Jun-2512:33 AM File folder
Home
Desktop
Libraries
This PC
MNetwork
File name: SOF’func.bdf LI Save
Save as type: IBIock Diagram/Schematic Files (* bdf) LI Cancel

[v Add file to current project

B16. If compilation is successful, you will get a message like the following. Click OK.

& Quartus Il X

'Q Full Compilation was successful (12 warnings)

ok |

Page 25 of 109

Digital Circuit Design Lab

B17. Ignore warnings for now. Compilation report-flow summary will present you with the
details:

ﬂ SOPfunc.bdf Compilation Report - SOPfunc
3 Flow Summary [Fowstaws ~ Succesful- Satlun 28 00:34:9 2025
=8 Flow Settings Quartus II 64-Bit Version 13.0.1 Build 232 06/12/2013 SP 1 5] Web Edition
B8 Flow Non-Default Global Settings Revision Name SOPfunc
== Flow Elapsed Time Top-level Entity Name SOPfunc
=8 Flow 0S Summary Family Cyclone I
E| Flow Log Device EP2C35F672C6
> [Analysis & Synthesis Timing Models Final
> [Fitter Total logic elements 1/33,216(<1%)
i) Flow Messages Total combinational functions 1/33,216(<1%)
i) Flow Suppressed Messages Dedicated logic registers 0/33,216(0%)
» [Assembler Total registers 0
» [TimeQuest Timing Analyzer Total pins 4/475(<1%)
Total virtual pins 0
Total memory bits 0/483,840 (0%)
Embedded Multiplier 9-bit elements 0/ 70 (0%)
Total PLLS 0/4(0%)

If any error occurs, you will find them at the bottom window.

IMessage
Info: Running Quartus IT Analysis & Synthesis
Info: Command: quartus_map --read settings_files=on --write_settings_files=off halfadder -c halfadder

e

Info: Found 1 design units, including 1 entities, in scurce file halfadder.bdf
Info: Elaborating entity "halfadder™ for the top lewvel hierarchy

Error: Node "instl" is missing source

Error: Quartus II Analysis £ Synthesis was unsuccessful. 1 error, 0 warnings
Error: Quartus II Full Compilation was unsuccessful. 3 errors, 0 warnings

]

OOOcceey

In case an error occurs, find the error on the block diagram and rerun compilation.

Page 26 of 109

Digital Circuit Design Lab

Verilog HDL File:

V1. Click on File > New... & a New Window will pop-up. Select Verilog HDL File under
Design Files and clink OK.

&4 New X

MNews Quartus II Project

“ Design Files
AHDL File
Block Diagram/Schematic File
EDIF File
)sys System File
State Machine File
SystemVerilog HDL File
Tcl Script File
[Verilog HDL File
WHDL File

“ Memory Files
Hexadecimal (Intel-Format) File
Memory Initialization File

“ Verification/Debugging Files
In-System Sources and Probes File
Logic Analyzer Interface File
SignalTap II Logic Analyzer File
University Program VWF

~ Other Files
AHNI Tnelude File

V2. A blank window will appear where we will write our Verilog HDL code.

v Verilogl.v B
sE DOm0 8 2ae | 2EIES

ekl
dt
!
i

Page 27 of 109

Digital Circuit Design Lab

V3. Complete the Code and Save the File.

*** Make sure Module Name, Verilog File Name, Top-level Entity (Project) Name is eactly
same. (i.e. SOPfunc in these 3 cases)

UE &S @ % 2@ 9 o S0Pfunc - || e vw."v o] 5 2 ¢ O A]
Project Navigator oax 0 SOPfunc.y]
Entity 3 AN T =< 06 Deml e | > EED

L

= = =

53 ;:j{vclsng; 1Lzm CE;CE F672C6 1
2 module| SOPfunc|A, B, C, f);
3
4 input A, B, C;
5 output f£;
6 |
7 and(g, A, C);
8 and (h, B, ~C);
9 or(ft, g, h);

Ay Hierarchy El Files ' Design Units » 10
11 endmodule

Tasks RaEx

V4. Click on start compilation button on the top menu bar.

-

V5. If compilation is successful, you will get a message like the following. Click OK.

& Quartus Il K

0 Full Compilation was successful (12 warnings)
|

Page 28 of 109

Digital Circuit Design Lab

V6. Click On Tools = Netlist Viewers 2 RTL Viewer.

Tools Window Help 5

Run Simulation Tool » P ™ | - @ 'E} \.'.) ﬂg & .& %

Launch Simulation Library Compiler

sv

SOPfunc.v
om0 S ¥ e | = [E]
unc (A, B, C, f);

Launch Design Space Explorer

c'_'.;:.

TimeQuest Timing Analyzer

Advisors »

Chip Planner

Design Partition Planner B I C r
Metlist Viewers 4 RTL Viewer

SignalTap II Logic Analyzer State Machine Viewer

In-System Memory Content Editor Technology Map Viewer (Post-Mapping)

Technology Map Viewer (Post-Fitting)
[

M| Logic Analyzer Interface Editor

Jm bE €€
A A& QK

V7. You can see the RTL (Register Transfer Level) view of your Verilog Code.

B >
C D

comb
| > f

A

S LH’

Page 29 of 109

Digital Circuit Design Lab

Simulation:

S1. Go to File2 New to create a Vector Waveform File (VWF) which is required for simulating
inputs and outputs. Select University Program VWF under Verification/Debugging Files and

click OK.

&4 New X

~ Design Files
AHDL File
Block Diagram/Schematic File
EDIF File
Qsys System File
State Machine File
SystemVerilog HOL File
Tcl Script File
Verilog HDL File
WHOL File
~ Memory Files
Hexadecimal (Intel-Format) File
Memory Initialization File
~ Verification/Debugging Files
In-System Sources and Probes File
Logic Analyzer Interface File
SignalTap I Logic Analyzer File
|Universit‘_.r Frogram VWF |
~ Other Files
AHDL Include File
Block Svmhaol File

S2. The following window will open up.

& X & M &L E R KB B R R A
Master Time Bar: 0 ps 1 * Pointer:
Name value at 0 ps 80.0 ns 160.0 ns 240.0 ns
0 ps 0 ps

Page 30 of 109

Digital Circuit Design Lab

S3. Click on Edit = Insert = Insert Node or Bus..

File Edit View Simulaton Help &)

» M Delete Del F YT OWR |2 mu 2 [y
Insert - Insert Node or Bus... L
Masi Pt
Value 2 |'

—

S4. In the Insert Node or Bus window, click Node Finder.

@; Insert Node or Bus x
Type: IMPUT -
. Cancel

Value type 9-Level -

Hode Finder...
Radix: Binary -
Bus width: 1
Start index 0

Display gray code count as binary count

S5. In the Node Finder window, Click List. Make sure Pins:all is selected under Filter.

S6. Now the window will look like the following. Click on the >>’ button.

€34 Node Finder X
Named: * Filter: Pins: all -
Look in: = List Cancel
Nodes Found: Selected Nodes:
e
Name Type Mame Type
in_ A Input
in_g Input >
in_C Input
- pu ==
0 f Output
<
<

Page 31 of 109

Digital Circuit Design Lab

S7. Now, it should appear like the following. Click OK.

& Node Finder %
Named: * Filter: Pins: all -
Look in: * List Cancel
Nodes Found: Selected Modes:
R
MName Type Name Type
in_ A Input A Input
n_ B Input > |5 B Input
in ¢ Input LN Input
- -
oyt f Out [all}
S put = f Output
<
<<

S8. In the following window, click OK.

&4 Insert Node or Bus X
Mame: **Multiple tems™®* oK
Type: **Multiple Ttems™=* ~
bl : Cancel

Value type 9-Level h

Mode Finder...
Radix: Binary h
Bus width: 1
Start inde» 0

Display gray code count as binary count

Page 32 of 109

S9. The vector waveform file will now look like the following:

Digital Circuit Design Lab

& A0 N & E W e R R R omE A a
Master Time Bar: 0 ps 1 r
Name value at 0 ps 80.0 ns 160.0 ns
0 ps 0ps

e | A BO

ic | B BO

in C BO

o B X
Now, you can clearly see the inputs and outputs.
S10. Click on Edit = Set End Time... and set the time to 80ns.

& End Time X
Set End Time
End Time: 80 ns -
S11. Select an input and from tool bar, click on the Overwrite Clock icon.
b B O N ENDOWE WY OWE E 2 R
Master Time Bar: 0 ps Owverwirite
N Value at A= Loof 2
ame 0 ps 0 ps
ol T
in B B O

Page 33 of 109

Digital Circuit Design Lab

S12. In the Clock window, set parameters of the clock. Only change the Period and keep
everything else the same as before. Double clock period as you move from one input (LSB) to
another as this will enable you to simulate the circuit for all possible input signal conditions.

€4 Clock *

Base waveform on time period

Period: 80.0 ns -
Offset: 0.0 ns -
Duty cycle (% 50 -

Cancel

S13. Now, after setting all the input clocks, Vector Waveform File will look like the following:

value at 0ps 1IZI.IIJ ns 2EI.IIZI ns
Mame 0 ps 0 ps
L | A BO
n B BO
i C BO
ol f B X ‘
S14. Save the Vector Waveform File.
S15. Click on Run Functional Simulation icon.
B & RO N E T E R e E R R B Ay @ B
S16. Now observe the simulated waveforms..
value at 0ps 1IJ.IIZI ns 2IZI.IIZI ns
Name 0 ps 0 ps
A BO
it | B BO
Im,_ C BO
e f B O

Page 34 of 109

Digital Circuit Design Lab

FPGA Programming:

F1. To load the program on to the FPGA board, go to Assignments 2 Pins.

Report 1Ex . .
Report not availabl Top View - Wire Bond
Cyclone |l - EP2C35F672C6
=== ==
® 1 23 45567 s 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
A APOOD@ OAVIOVAROOO@TEA A
8 '@'@@@@@@@@@@l@@@@@@@@@@@@ 8
cPRREOEPOOEOOLVEOOOVOADE LD M
0ROV ROOOOO @.@@ @@@@'@ @V@@ o
F 0 OVOAVLME @@@@ £
Fl@@ewAOO @@@@@@@@@@ OO O]
) ©L05 05050503 QOROOOQBOEL '@@@'@@@ G
FDO@OVO OA@@@W@@@AO o Q@O
22 |00 00ADOBD O AR ADWD Q@R i
OO0 0100 G0 MIVAVIVAVAV @@@@ @O@@@@ K
o% NOWE\ AEw 6
Vi ANAMD O Q@@ N1
\{p) %/}i Mn
1 P
— =— NG G @\/C R
Gro Rep. MDA @ LAQ T
0s U'@@‘@@@@@ hOAD) ROLOAVECIBIGIGROIE
Tasks = v-@-@@@@@@ QEOALE AN AOOADBOC| v
" R“"A”al [" (@ @D OV, 00V Ve AL VO OODEW 2.
v (& Early Pir v |@® X Dw QEOROOO ORew@o v
[ary | M@ EPOO @@@@-@@@@-@ @\ A OO
EIR“” P OR0R0L0) & AV OAALN AL OB DR 0=
hEXp“ @O 00w 0ATIDOADEEOEE O XDE)
v e R eOee0D OV OOV OOV OADOEED Mo
> s PROO000000OONIODE VROV =
o v VAGDOODEOAVOINVADOOOBOOMY |«
12 3 4 5 8 7 8 9 10111213 14 15 18 17 13 19 20 21 22 23 24 25 28
v s == ===
; Named: * v w» Edit: v
n Node Name Direction Location 10 Bank VREF Group /O Standard Reserved Current Strength Differential Pair
in A Input 3.3-V LVTTL (default) 24mA (default)
n_ B Input 3.3-V LVTTL (default) 24mA (default)
B C Input 3.3-V LVTTL (default) 24mA (default)
M f Output 3.3-V LVTTL (default) 24mA (default)

<<new node>>

F2. We will be using toggle switches for inputs and Red LED for output. Assign the pins as
follows. Click on Location and type in the pin name.

INPUT OUTPUT
Signal | Switch No. Pin No. Signal LED No. Pin No.
A SW2 PIN P 25
B SW1 PIN_N26 f LEDRO PIN_AE23
C SWO PIN N25
g Named: * v |&y | Edit: K
1 Node Name Direction Location I/0 Bank VREF Group 1/0 Standard Reserved Current Strength
m_ 7 Input PIN_P25 5] B&_MNO 3.3-V LVTTL (default) 24mA (default)
m_E Input PIN_N26 5 B5_N1 3.3-V LVTTL (default) 24mA (default)
m_ Input PIN_N25 5 B5_N1 3.3-V LVTTL (default) 24mA (default)
M f Qutput PIN_AE23 7 B7_NO 3.3-V LVTTL (default) 24mA (default)

Page 35 of 109

Digital Circuit Design Lab

F3. Close the window. Note that now you will have to compile the code again. So go to start
compilation.

F4. After successful compilation, go to Tools ?Programmer.

Mode: JTAG = Progress: :

£, Hardware Setup... No Hardware
("] Enable real-time ISP to allow background programming (for MAX IT and MAX V devices)
W File Device Checksum Usercode Program/ Verify Blank- Examine
&t Start Configure Check
EP2C35F672 002F84B7 002F84B7

i Stop output_files/SOPfunc...

24 Auto Detect
{ Delete

4 Add File...

M= Change File..

A Save File

*¥ Add Device.. TDI
—_—
ﬁﬂ‘n Up

EP2C35F672
L pown
TDO

Fs

F5. Select Hardware Setup. In the Hardware Setup window, select USB-Blaster (USB-0) and

click Close.
A Hardware Setup x
Hardware Settings JTAG Settings
Select a programming hardware setup to use when programming devices. This programming
hardware setup applies only to the current programmer window.
Currently selected hardware: | USB-Blaster [LISB-0] -
Available hardware items
Hardware Server Port I Add Hardware. .. I
USE-Blaster Local USB-0
Remove Hardware
Close

Page 36 of 109

Digital Circuit Design Lab

F6. Click Start on the Left-Hand Side toolbar. You should see the progress bar moving and
going to 100% if loading is successful.

File Edit View FProcessing Tools Window Help 5 |Search altera.com |@

|_:. Hardware Setup... | _IE:E!-E!Ia:;ter LISE-0 | Mode: |JThG < Progress: [100%(91@::&&_

[] Enable real-time ISP to allow backaround programming (for MAX II and MAX V devices)

File Device Checksum Usercode Program, Verify Blank- Examine
Configure Chedk

Funcl.sof EP2C35F572 0D2F85AT DO2F85AT ¥
b Stop

i Start

Gl Auto Detect

. Delete

(X Add File...

?“_,‘ Change File...

|l Save File

B Add Device...

T up
ﬂ% Down

EP2C35FG72

r 9

Also note that, if an error occurs, it can be found in the message window:

Type |Mess|age
j_) Info: Ended Programmer coperation at Jat Mar 11 10:24:10 2017
i Info: Started Programmer cperaticon at Sat Mar 11 10:24:30 2017
i Info: Configuring device index 1
i
1

Error: CONF_DONE pin failed to go high in device 1
Error: Operation failed
w) Info: Ended Programmer cperation at Sat Mar 11 10:24:32 2017

Y
.
6 Info: Device 1 contains JTAG ID code 0Ox020B40DD

F7. Verify the outputs in FPGA board.

Page 37 of 109

Digital Circuit Design Lab

Hardware Description Language (HDL)

A hardware description language (HDL) is a computer-based language that describes the
hardware of digital systems in a textual form. It resembles an ordinary computer programming
language, such as C, but is specifically oriented to describing hardware structures and the
behavior of logic circuits. One way to view an HDL is to observe that it describes a relationship
between signals that are the inputs to a circuit and the signals that are the outputs of the circuit.

There are two major Hardware Description languages —
e VHDL
e Verilog

We will focus on Verilog HDL for our Lab. In the 1980s rapid advances in integrated circuit
technology lead to efforts to develop standard design practices for digital circuits. Verilog was
produced as a part of that effort. The original version of Verilog was developed by Gateway
Design Automation, which was later acquired by Cadence Design Systems.

There are three distinct ways we can write Verilog Codes.
e Structural
e Data Flow
e Behavioral

In this Lab, we will learn these different ways of writing Verilog Code by implementing the
following function:

f=AC +BC’

A © :)g_

C o— :z>—0f
[(~C) h

B o)

Page 38 of 109

Digital Circuit Design Lab

Structural

Basic

/*
This Verilog Code implements the Sum of Product (SOP) function
using Structural representation which is also known as Gate level modeling.
*/
module SOPfunc (A, B, C, f);
input A, B, C;
outputf;

wire g, h, k; // Optional Declaration

and (g, A, C);
not (k, C);
and (h, B, k);
or (f, g h);

endmodule

Simplified

module SOPfunc (input A, B, C, output f);
and (g, A, C);
and (h, B, ~C);

or (f, g h);

endmodule

Page 39 of 109

Digital Circuit Design Lab

Data Flow

Basic

module SOPfunc (A, B, C, f);
input A, B, C;
output f;
wire g, h, k;
assigng=A&C;
assign k=~C;
assignh =B & k;
assignf=g| h;

endmodule

Simplified

module SOPfunc (A, B, C, f);
input A, B, C;

output f;

wire g, h;

assigng=A&C;
assignh =B & ~C;
assignf=g| h;

endmodule

Further Simplified

module SOPfunc (A, B, C, f);
inputA, B, C;
output f;

assignf=(A&C) | (B&~C);

endmodule

Page 40 of 109

Behavioral

Digital Circuit Design Lab

Basic

module SOPfunc (A, B, C, f);
input A, B, C;
output reg f;
regg, h;

always @ (A, B, C)
begin
g=A&C;
h=B &~C;
f=glh;

end

endmodule

Simplified

module SOPfunc (A, B, C, f);
inputA, B, C;

outputregf;

always @ (A, B, C)
f=(A&C)| (B &~C);

endmodule

Page 41 of 109

Using Case (Basic)

module SOPfunc (A, B, C, f);
input A, B, C;
output reg f;

always @ (A, B, C)

case ({A, B, C})
3'b000:
3'b001:
3'b010:
3'p011:
3'b100:
3'b101:
3'b110:
3'b111:

endcase

endmodule

Using Case (Simplified)

module SOPfunc (A, B, C, f);
input A, B, C;
outputregf;

always @ (A, B, C)
case ({A, B, C})
0:f=0;

Qa Rk bh2
— —h —h —h —h —h —h
Il
_ A a0 -~ 0

7:
endcase

endmodule

Page 42 of 109

Digital Circuit Design Lab

Digital Circuit Design Lab

Experiment: 3

Experiment name: Introduction to Adder Circut.

Introduction:

Adders and sub tractors are the basic operational units of simple digital arithmetic operations. In
this experiment, the students will construct the basic adder and sub tractor circuit with common
logic gates and test their operability. Then in the last job, they will cascade adder ICs to get
higher bit adders.

Binary Adder

Among the basic functions encountered are the various arithmetic operations. The most basic
arithmetic operation is the addition of two binary digits. This simple addition consists of four
possible elementary operations, namely, 0 + 0=0,0+1=1,1+0=1,and 1 + 1 = 10. The first
three operations produce a sum whose length is one digit, but when both augend and addend bits
are equal to 1, the binary sum consists of two digits. The higher significant bit of this result is
called a carry. When the augend and addend numbers contain more significant digits, the carry
obtained from the addition of two bits is added to the next higher-order pair of significant bits. A
combinational circuit that performs the addition of two bits is called a half-adder. One that
performs the addition of three bits (two significant bits and a previous carry) is full-adder.

Half Adder

From the basic understanding of a half-adder, we find that the circuit needs two binary inputs
and two binary outputs. The input variables designate the augend and addend bits; the output
variables produce the sum and carry. It is necessary to specify two output variables because the
result may consist of two binary digits. We arbitrarily assign symbols x and y to the two inputs
and S (for sum) and C (for carry) to the outputs.

So, we have established the number and names of the input and output variables, we are ready to
formulate a truth table to identify exactly the function of the half-adder. This truth table is —

X y C S
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

The carry output is 0 unless both inputs are 1. The S output represents the least significant bit of
the sum.

The simplified Boolean functions for the two outputs can be obtained directly from the truth
table. The simplified sum of products expressions are —

S=xy+x)'=x®y
C=xy

Page 43 of 109

Digital Circuit Design Lab

The logic diagram for this implementation is shown below —

X y

7408

Full Adder

A full-adder is a combinational circuit that forms the arithmetic sum of three input bits. It
consists of three inputs and two outputs. Two of the input variables, denoted by x and y,
represent the two significant bits to be added. The third input, z, represents the carry from the
previous lower significant position. Two outputs are necessary because the arithmetic sum of
three binary digits ranges in value from 0 to 3, and binary 2 or 3 needs two digits. The two
outputs are designated by the symbols S for sum and C for carry. The binary variable S gives the
value of the least significant bit of the sum. The binary variable Cr gives the output carry. The
truth table of the full-adder is

’—‘*—"—‘O’—‘OOOO

— OO~~~ oW

ol Rl el Keel Renl [an)l Ranl

Ll Lol ==l Kl B el [l Ranl)

— OO I—O—O|N

The eight rows under the input variables designate all possible combinations of 1's and 0's that
these variables may have. The 1's and 0's for the output variables are determined from the
arithmetic sum of the input bits. When all input bits are 0's, the output is 0. The S output is equal
to 1 when only one input is equal to 1 or when all three inputs are equal to 1. The C output has a
carry of 1 if two or three inputs are equal to 1. Physically, the binary signals of the input wires
are considered binary digits added arithmetically to form a two-digit sum at the output wires. On
the other hand, the same binary values are considered variables of Boolean functions when
expressed in the truth table or when the circuit is implemented with logic gates. It is important to
realize that two different interpretations are given to the values of the bits encountered in this
circuit. The input-output logical relationship of the full-adder circuit may be expressed in two

Page 44 of 109

Digital Circuit Design Lab
Boolean functions, one for each output variable. This implementation uses the following Boolean
expressions:

S=xYz+xyz'+ 72 +xyz=2'(xXy +)+ z(xy +) =Z(x @ Y) +z(x D y) =x Dy Dz
C=xyvz+x)z+xz2' +xpz=(xXy+x)z+x0(z+ 2) =(xD y)z+ xp

The logic diagram for the full-adder implemented in sum of products is shown here.

X ¥y z
¢ i LN 3 (8 i 4
1 /D [ii/\ﬁ °3
+— 4 5
| ¥
: : 6
— !
| E ®
i 1 L 3
*- ' \ 3 (h) C
® ; 5 _/ 2
Equipment:

1. Trainer Board
2. IC 7408,7432,7486

Procedure:

1. Fill up the truth table for a half adder.

2. Verify the Boolean function for a half adder.

3. Construct the logic diagram from the Boolean functions.
4. Select the ICs from the equipment list.

5. Implement the output logic.

6. Fill up the truth table for a full adder.

7. Verify the Boolean function for a full adder.

8. Construct the logic diagram from the Boolean functions.
9. Select the ICs from the equipment list.

10. Implement the output logic.

Page 45 of 109

Procedure for FPGA

Digital Circuit Design Lab

1. Create a new project and create a new block diagram/schematic/verilog file.

2. Compile and simulate the schematic. If everything is ok, assign pins as follows —

Half Adder:
INPUT OuUTPUT
Signal | Switch No. Pin No. Signal LED No. Pin No.
X SwWl PIN N26 C LEDR1 PIN AF23
Y SWOo PIN N25 S LEDRO PIN AE23
Full Adder:
INPUT OUTPUT
Signal | Switch No. Pin No. Signal LED No. Pin No.
X SW2 PIN P25 C LEDR1 PIN AF23
Y SWl PIN N26 S LEDRO PIN AE23
z SWO PIN N25
Report

1. Find out the expressions of Sum (S) & Carry (C) bit of the Full-Adder using K-Map.
2. Design a Full-Adder using two Half-Adder block and basic gates.
3. Design a 4-bit Adder using four (4) Full-Adder blocks.

Page 46 of 109

Half Adder (Structural)

module HalfAdder (x, y, S, C);
inputx, y;

output S, C;

xor (S, X, y);
and (C, x, y);

endmodule

Half Adder (Data Flow)
module HalfAdder (x, y, S, C);
inputx, y;

output S, C;

assignS=x"y;
assign C=x&y;

endmodule

Half Adder (Behavioral)
module HalfAdder (x, y, S, C);
inputx, y;

outputreg S, C;

always @ (x, y)
{C,St=x+y;

endmodule

Page 47 of 109

Digital Circuit Design Lab

Digital Circuit Design Lab

Full Adder (Structural)
module FullAdder (x,, z, S, C);
inputx,y, z;
output S, C;

wire g, h, k;

// Sum (S)

xor (g, X, y);

xor (S, g, z);

// Carry (C)
and (h, x, y);
and (k, g, z);
or (C, h, k);

endmodule

Full Adder (Data Flow)
module FullAdder (x,, z, S, C);

inputx,y, z;

output S, C;

assignS=x"y"z;
assignC=((x "y) &2z) | (x &y);

endmodule

Full Adder (Behavioral)
module FullAdder (x,, z, S, C);

inputx,y, z;

outputreg S, C;

always @ (x, y,)
{C,St=x+y+z;

endmodule

Page 48 of 109

Full Adder from Half Adder

Digital Circuit Design Lab

(k)

v
W

I) (2)
HA1
(h)
y——y C
Z

// Full Adder (Top Level Hierarchy)

module FA (x, v, z, S, C);
inputx,y, z;
output S, C;

wire g, h, k;

HAHA1 (x,y, g, h);
HAHA2 (g, z, S, k);
or (C, h, k);

endmodule

// Half Adder

module HA (x,y, S, C);
inputx, y;
outputreg S, C;

always @ (x,)
{C,S}=x+y;

endmodule

Page 49 of 109

Digital Circuit Design Lab

Experiment: 4
Experiment name: Introduction to BCD Adder

Introduction:

Before discussing BCD Adder circuitry first, we can review the basic concepts of BCD no
system and BCD addition technique.

BCD
Binary coded decimal (BCD) is a weighted code that is commonly used in many computers and

calculators to represent decimal numbers. This code takes each decimal digit and represents it by
a four-bit code ranging from 0000 to 1001.

Decimal | Binary BCD
0 0000 (

) I
9 1001 I
10 | 101
11 101
12 | 1100

13 | 1101
14 | 1110

15 | 1111

The table illustrates the difference between straight binary and BCD. BCD represents each
decimal digit with a 4-bit code. Notice that the codes 1010 through 1111 are not used in BCD.

BCD Addition

The addition of decimal numbers that are in BCD form can be best understood by considering
the two cases that can occur when two decimal digits are added.

Sum Equals 9 or Less

Consider adding 45 and 33 using BCD to represent each digit:

45 0100 0101 « BCD for 45
+33 + 0011 0011 « BCD for 33
78 0111 1000 <« BCD for 78

In the examples above, none of the sums of the pairs of decimal digits exceeded 9; therefore, no
decimal carries were produced. For these cases, the BCD addition process is straightforward and
is actually the same as binary addition.

Page 50 of 109

Digital Circuit Design Lab

Sum Greater than 9
Consider the addition of 6 and 7 in BCD:

6 0110 <« BCD for 6
+7 + 0111 <« BCD for 7
+13 1101 < invalid code group for BCD

The sum 1101 does not exist in the BCD code; it is one of the six forbidden or invalid four-bit
code groups. This has occurred because the sum of the two digits exceeds 9. Whenever this
occurs, the sum must be corrected by the addition of six (0110) to take into account the skipping
of the six invalid code groups:
0110 « BCD for 6
+ 0111 « BCD for 7
1101 « invalid sum
0110 +« add 6 for correction
0001 0011 « BCD for 13
—_—

—_—
1 3
As shown above, 0110 is added to the invalid sum and produces the correct BCD result. Note

that with the addition of 0110, a carry is produced in the second decimal position. This addition
must be performed whenever the sum of the two decimal digits is greater than 9.
Consider the addition of 59 and 38 in BCD:

I
1

59 0101 1001 « BCD for 59
+38 + 0011]1000 <« BCD for 38
97 1001 0001 < perform addition
0110 <« add 6 to correct
l(ﬁ)Oi' \011_1' BCD for 97
9 7

Here, the addition of the least significant digits (LSDs) produces a sum of 17 = 10001. This
generates a carry into the next digit position to be added to the codes for 5 and 3. Since 1779, a
correction factor of 6 must be added to the LSD sum. Addition of this correction does not
generate a carry; the carry was already generated in the original addition.
To summarize the BCD addition procedure:
1. Using ordinary binary addition, add the BCD code groups for each digit position.
2. For those positions where the sum is 9 or less, no correction is needed. The sum is in
proper BCD form.
3. When the sum of two digits is greater than 9, a correction of 0110 should be added to that
sum to get the proper BCD result. This case always produces a carry into the next digit
position, either from the original addition (step 1) or from the correction addition.

BCD ADDER

Consider the arithmetic addition of two decimal digits in BCD, together with a possible carry
from a previous stage. Since each input digit does not exceed 9, the output sum cannot be greater
than 9 + 9 + 1 = 19, the 1 in the sum being an input carry. Suppose we apply two BCD digits to a

Page 51 of 109

Digital Circuit Design Lab

4-bit binary adder. The adder will form the sum in binary and produce a result that may range
from 0 to 19. These binary numbers are listed in Table and are labeled by symbols K, Z4, Z3, Z2,
and Zi1. K is the carry, and the subscripts under the letter Z represent the weights 4, 3, 2, and 1
that can be assigned to the four bits in the BCD code. The first column in the table lists the
binary sums as they appear in the outputs of a 4-bit binary adder. The output sum of two decimal
digits must be represented in BCD and should appear in the form listed in the second column of
the table. The problem is to find a simple rule by which the binary number, in the first column
can be converted to the correct BCD-digit representation of the number in the second column. In
examining the contents of the table, it is apparent that when the binary sum is equal to or less
than 1001, the corresponding BCD number is identical, and therefore no conversion is needed.
When the binary sum is greater than 1001, we obtain an invalid BCD representation. The
addition of binary 6 (0110) to the binary sum converts it to the correct BCD representation and
also produces an output carry as required. The logic circuit that detects the necessary correction
can be derived from the table entries. It is obvious that a correction is needed when the binary
sum has an output carry K = 1. The other six combinations from 1010 to 1111 that need a
correction have a 1 in position Z4. To distinguish them from binary 1000 and 1001, which also
have a 1 in position Z4 we specify further that, either Z3 or Z> must have a 1 along with Z4. The
condition for a correction and an output carry can be expressed by the Boolean function
C=K+72,72,+72,7,

When C = 1, it is necessary to add 0110 to the binary sum and provide an output carry for the
next stage.

A BCD adder is a circuit that adds two BCD digits in parallel and produces a sum digit also in
BCD. A BCD adder must include the correction logic in its internal construction. To add 0110 to
the binary sum, we use a second 4-bit binary adder, as shown in Figure. The two decimal digits,
together with the input carry, are first added in the top 4-bit binary adder to produce the binary
sum. When the output carry is equal to zero, nothing is added to the binary sum. When it is equal
to one, binary 0110 is added to the binary sum through the bottom 4-bit binary adder. The output
carry generated from the bottom binary adder can be ignored, since it supplies information
already available at the output-carry terminal. The BCD adder can be constructed with three IC
packages.

Caution:
1. Remember to properly identify the pin numbers so that no accidents occur.
2. Properly bias the ICs with appropriate voltages to appropriate pins.

Procedure:
1. Draw the logic diagram to implement the task.
2. Select the required ICs.
3. Verify the following truth table for 20output values (0-20).

Page 52 of 109

Digital Circuit Design Lab

A4 A3 A2 Al B4 B3 B2 Bl

|

vee [12 14 3 5 11 15 2 6
GRD Cin
t 8 74283 7
Cout | 10 13 1 4 ‘
=0
K Z, |Zy |Z, |Z,

4
7432 6
7432 5

Vcc 12 14 3 5 11 15 2 6

GRD Cin

Cout

[t} @
-]
=
N
(00}

5 w

=

w

=

19
o)

||}_|

2

cC sS4 S3 852 ¢s1i

Figure: BCD Adder

Page 53 of 109

Digital Circuit Design Lab

Binary Sum BCD Sum
Decimal | K | Z, | Z3 | Z2 | Z; C S4 S S> S
0 0 0 0 0 0 0 0 0 0 0
1 0] 0|01 O 1 0 0 0 0 1
2 0 0 0 1 0 0 0 0 1 0
3 0] 0] O 1 1 0 0 0 1 1
4 0 0 1 0 0 0 0 1 0 0
5 0 0 1 0 1 0 0 1 0 1
6 0] 0 1 1 0 0 0 1 1 0
7 0 0 1 1 1 0 0 1 1 1
8 0 1 0] 0] O 0 1 0 0 0
9 0 1 0 0 1 0 1 0 0 1
10 O 1|0 11]0 1 0 0 0 0
11 0 1 0 1 1 1 0 0 0 1
12 0 1 1 0 0 1 0 0 1 0
13 0 1 1 0 1 1 0 0 1 1
14 0 1 1 1 0 1 0 1 0 0
15 0 1 1 1 1 1 0 1 0 1
16 1 0 0 0 0 1 0 1 1 0
17 1 0 0 0 1 1 0 1 1 1
18 11010 1 0 1 1 0 0 0
19 1 0 0 1 1 1 1 0 0 1
Procedure for FPGA

1. Create a new project and create a new block diagram/schematic file.

2. Compile and simulate the schematic. If everything is ok, assign pins as follows:

INPUT OUTPUT
Signal | Switch No. Pin No. Signal LED No. Pin No.

Al SW4 PIN AF14 c LEDR4 PIN AD22
A2 SW5 PIN AD13 S1 LEDRO PIN AE23
A3 SWo6 PIN AC13 S2 LEDR1 PIN AF23
A4 SW7 PIN C13 S3 LEDRZ2 PIN ABZ21
B1 SWO PIN N25 S4 LEDR3 PIN AC22
B2 SWl PIN N26

B3 SW2 PIN P25

B4 SW3 PIN AE14

Page 54 of 109

Digital Circuit Design Lab

3. Test the functionality of the designed circuit using switches and LEDs on the FPGA board

for the following table —

4 A (Binary) B B (Binary) BCD BCD SUM (Binary)
(Decimal) (Decimal) SU.M
A4 | A3 | A2 | Al B4 | B3 | B2 | Bl | (Decimal) S4 | S3 | S2 | S1
5 0 1 01 0 0j]0|01|O0 05
7 0 1 1 1 4 O] 1|00 11
2 0101 0 6 0] 1 110 08
9 1 010711 8 110|010 17
1 01001 3 001 1 04

Page 55 of 109

Digital Circuit Design Lab

BCD Adder

module BcdAdd (A, B, S, C);
input [4:1]A, B;
output reg [4:1] S;
output reg C;

reg[5:1]1Z;

always @ (A, B)

begin
Z=A+B;
if (Z>9)
{C,S}=27+6;
else
{C,s}=17
end
endmodule

Page 56 of 109

Digital Circuit Design Lab

Experiment: 5

Experiment name: Introduction to Multiplexers and Demultiplexer.

Introduction

Multiplexers are the most important attributions of digital circuitry in communication hardware.
These digital switches enable us to achieve the communication network we have today. In this
experiment the students will have to construct MUX (as they call multiplexers) with simple logic
gates and they will implement general logic using 8:1 MUX as the basic construction unit.

Multiplexer

A modern home stereo system may have a switch that selects music from one of four sources: a
cassette tape, a compact disc (CD), a radio tuner, or auxiliary input such as audio from a VCR or
DVD. The switch selects one of the electronic signals from one of these four sources and sends it
to the power amplifier and speakers. In simple terms, this is what a multiplexer (MUX) does: it
selects one of several input signals and passes it on to the output.

A digital multiplexer or data selector is a logic circuit that accepts several digital data inputs and
selects one of them at any given time to pass on to the output. The routing of the desired data
input to the output is controlled by SELECT inputs (often referred to as ADDRESS inputs).
Normally, there are 2" input lines and n selection lines whose bit combinations determine which
input is selected.

A 4 to 1 line multiplexer is shown in Figure. Each of the four input lines, Io to I3 is applied to one
input of an AND gate. Selection lines S1 and So are decoded to select a particular AND gate. The
function table, Figure lists the input-to-output path for each possible bit combination of the
selection lines. To demonstrate the circuit operation, consider the case when S1So = 10. The
AND gate associated with input I2 has two of its inputs equal to 1 and the third input connected
to I2. The other three AND gates have at least one input equal to 0, which makes their outputs
equal to 0. The OR gate output is now equal to the value of I2 thus providing a path from the
selected input to the output.

Demultiplexer

A Demultiplexer does the opposite function of multiplexers. A demultiplexer is a circuit that
receives information on a single line and transmits this information on one of 2" possible output
lines. The selection of a specific output line is controlled by the bit values of n selection lines.
The output channel can be selected depending on the combination of selection bits.

Caution:
1. Remember to properly identify the pin numbers so that no accidents occur.
2. Properly bias the ICs with appropriate voltages to appropriate pins.

Equipment:
1. Trainer Board
2. IC 74151, 7432, 7408, 7404
3. Microprocessor Data handbook.

Page 57 of 109

Digital Circuit Design Lab
Job 1:
Implementation of a four to one way Multiplexer (4:1 MUX) with basic gates.

Ve

EAN
14 13 12 11 10 9
1 |

) 7411

1 2 3 4
I0 I1 1I2 I3 S1 SO
|
1 3
7404
2 4
1
2 | 12
13
1
7411 o \ 3
2
: |
5* 6 7432

9 AN
7411 8

7432

7411#2

Page 58 of 109

Digital Circuit Design Lab

Procedure:

1. Write the truth table for four to one way MUX.

ss [s, [Y

2. Write the Boolean function for the output logic.
3. Draw the logic diagram to implement the Boolean function.
4. Select ICs from the equipment list.

5. Observe and note the output logic for all combinations of inputs.

Page 59 of 109

Digital Circuit Design Lab

Job 2:
Implement the following function using an 8:1 MUX.

F(A4,B,C,D)=Y'm(0,1,3,5,8,9,14,15)

If we have a Boolean function of # + 1 variables, we take n of these variables and connect them
to the selection lines of a multiplexer. The remaining single variable of the function is used for
the inputs of the multiplexer. If A4 is this single variable, the inputs of the multiplexer are chosen
to be either 4 or 4" or 1 or 0. By judicious use of these four values for the inputs and by
connecting the other variables to the selection lines, one can implement any Boolean function
with a multiplexer. In this ways, it is possible to generate any function of n + 1 variables with a 2"
tol multiplexer.

Vec D4 D5 Di D7 g

I_II_II_II_IITII_II_II_I

) IC 74151

|_||_||_||_||L|E 8

D3 D2 DI DO Y E GND

1 [16 8 7
A - L |4
A TG"UﬂIzg
I
N 1 74151 +—
3 A L li5
L |14
L L3
[L
9 10 11
S, [s [se
B C D

Page 60 of 109

Procedure:

1. Write the truth table for the above function.

e L e e el e e e = = = el (el el [el [l N

ol e i = == =N N F = I F Y R F Y Rl L vy
e k== e = fl el e e el el El el el f

e = = = N = N = S F I P R S F Y Ly

— = O O|IC|IO|m— OO |IO— O

Digital Circuit Design Lab

Let, B, C, D of the 4 variables (A, B, C, D) connected to the selection lines of a multiplexer and
remaining single variable A of the function is used for the inputs of the multiplexer.

I I, 1, I, I, I I I,
A 1 1 1 1
A 1 1 1 1
1 1 0 A 0 A A A

2. Draw the logic diagram to implement the Boolean function.

3. Select ICs from the equipment list.

4. Observe and note the output logic for all combinations of inputs.

Page 61 of 109

Digital Circuit Design Lab

Job 3:
Implementation of a one to fore way Demultiplexer (4:1 DEMUX) with basic gates.

Procedure:

1. Write the truth table for one to four way DEMUX.

ssts, o, |1, |6 |1

7404

I0

|
L
l

13

7411

a1 W
|

()

—

=

7411

=
L\\\‘//J

co

—

N

7411

2. 13

N

T411#2

2. Write the Boolean function for the output logic.

3. Draw the logic diagram to implement the Boolean function.

4. Select ICs from the equipment list.

5. Observe and note the output logic for all combinations of inputs.

Page 62 of 109

Digital Circuit Design Lab

Procedure for FPGA.:

Design 4:1 MUX

1. Create a new project and create a new block diagram/schematic file.
2. Compile and simulate the schematic. If everything is ok, assign pins as follows:

INPUT OouTPUT
Signal Switch Pin No. Signal LED Pin No.

10 SwW2 PIN P25 Y LEDRO | PIN_AE23
I1 SW3 PIN AEI14

12 Sw4 PIN AF14

I3 SW5 PIN ADI13

SO SWo0 PIN N25

S1 SW1 PIN N26

3. After assigning pins, the final schematic should look like the following one:

o

== H N —
: I - !)y) P AEZS
L iy [FED]

P AFU | & e
o

COCEk - - L

IS | 5 —— -

4. Test the functionality of the designed circuit using switches and LEDs on the FPGA board.

Page 63 of 109

Digital Circuit Design Lab

Implement the following function using an 8:1 MUX

F(A4,B,C,D)=>m(0,1,3,5,8,9,14,15)

1. Create a new project and create a new block diagram/schematic file.
2. Compile and simulate the schematic. If everything is ok, assign pins as follows:

INPUT OUTPUT
Signal Switch Pin No. Signal LED Pin No.
A SW3 PIN AE14 Y LEDRO | PIN AE23

SW2 | PIN P25
SW1 | PIN N26
SW0 | PIN N25

Cla|w

3. After assigning pins, the final schematic should look like the following one:

PIN_N25} D —
PIN_N26} € [—
PIN_P25] B [—

“j" ‘ Do

D1

o D2 Y ;OUTPUT :) Y

| PIN_AE23]

[PIN_AET4} A P g

2]
=
=)

D4
D5

D86
‘ D7
— GN
inst MULTIPLEXER

i D3 WN 0

4. Test the functionality of the designed circuit using switches and LEDs on the FPGA board.

Page 64 of 109

Digital Circuit Design Lab

DEMUX

1. Create a new project and create a new block diagram/schematic file.
2. Compile and simulate the schematic. If everything is ok, assign pins as follows:

INPUT OUTPUT
Signal | Switch No. Pin No. Signal | LED No. | Pin No.
SO SWO0 PIN N25 10 LEDRO | PIN AE23
S1 SW1 PIN N26 I LEDRI1 | PIN_AF23
Y SW2 PIN P25 2 LEDR2 | PIN AB2I
I3 LEDR3 | PIN AC22

3. After assigning pins, the final schematic should look like the following one:

[PIN_P25 | PIN_NZ6 | PIN_N25 |

i = o
i o IR

p—
p—

s __..
0
c
—
« }—:JJLEU:—:} i [PIN_AEZ3 |
Ling
* —DIIBIT i [PIN_AFZ3 |
- EAp—
t CITET 1 [PIN_AB21]
s :
e s Y [PIN_AC2Z]

4. Test the functionality of the designed circuit using switches and LEDs on the FPGA board.

Report:
1. Implement a Full Adder using an 8:1 MUX.
2. Repeat 1 using two 4:1 MUX and basic gates.
3. Implement a 4:1 MUX using three 2:1 MUX.
4. Implement an 8:1 MUX using two 4:1 MUX & a 2:1 MUX.

Page 65 of 109

MUX (2 to 1)

Digital Circuit Design Lab

Conditional (Ternary) Operator
module mux2to1 (I0, I1, S, Y);
inputl0, 11, S;

output reg Y;
always @ (10, 11, S)
Y=S7?I1:10;

endmodule

If-Else
module mux2to1 (10, 11, S, Y);
inputl0, 11, S;

output reg Y;

always @ (10, 11, S)

if (S==0)
Y =10;
else
Y=1I1;
endmodule
Case

module mux2to1 (10, 11, S, Y);
inputl0, 11, S;

output reg Y;

always @ (10, 11, S)

case (S)
0:Y=10;
1:Y=11;

endcase

endmodule

Page 66 of 109

MUX (4 to 1)

Digital Circuit Design Lab

If-Else If-Else

module mux4to1 (I, S, Y);
input [3:0] [;
input[1:0] S;

output reg Y;

always @ (I, S)

if (S==0)
Y =1[0];
elseif (S==1)
Y=I[1];
elseif (S==2)
Y=1[2];
else
Y=1[3];
endmodule
Case

module mux4to1 (I, S, Y);
input [3:0] [;
input[1:0]S;

outputreg;

always @ (I, S)
case (S)
0:Y=1[0]; // 2'b00: Y = 1[0]
1:Y=1[1];//2'b01:Y = I[1]
2:Y=1[2];//2'b10:Y =1[2]
3:Y=I[3];//2'b11:Y =1[3]
endcase

endmodule

Page 67 of 109

Digital Circuit Design Lab

4to1 MUX from 2to 1 MUX

S [0]
170) e— 10 >
Y ST1]
1[1] &— I ?
Mi o S
Y—eY
? I1
g Y2
1[2] &— 10 M3
Y
1[3]e— 11

M2

// 4to 1 Mux (Top Level Hierarchy)
module mux4to1 (I, S, Y);

input [3:0] I;

input[1:0] S;

output;

wire Y1,Y2;

mux2to1 M1(I[0], 1 [1], S[0], Y1);
mux2to1 M2(1 [2], 1 [3], S [0], Y2);
mux2to1 M3(Y1,Y2,S[1],Y);

endmodule

// 2 to 1 Mux
module mux2to1 (10, I1, S, Y);
inputl0, 11, S;

output reg Y;

always @ (10, 11, S)
Y=S?I1:10;

endmodule

Page 68 of 109

DEMUX (1 to 4)

Digital Circuit Design Lab

module demux1to4 (Y, S, |);
input;
input[1:0]S;

output reg [3:0] |;

always @ (Y, S)

begin
I=0;//1=4'p000
case(S)
0:1[0]=Y;//2'b00: I[0] =Y
1:1[11=Y;//2'b01:I[1]1=Y
2:1[2]1=Y;//2'b10: 1[2] =Y
3:1[3]=Y;//2'b11:1[3] =Y
endcase
end
endmodule

Page 69 of 109

Digital Circuit Design Lab

Experiment: 6

Experiment name: Introduction to Encoders and Decoders.

Introduction:
Priority Encoder

A priority encoder is an encoder circuit that includes priority function. Priority Encoder
includes the necessary logic to ensure that when two or more inputs are activated, the output
code will correspond to the highest-numbered input. The truth table for a 4 to 2 priority encoder
is given in Table. The X's are don't-care conditions that designate the fact that the binary value
may be equal either to 0 or 1. Input D3 has the highest priority; so regardless of the values of the
other inputs, when this input is 1, the output for xy is 11 (binary 3). D2 has the next priority level.
The output is 10 if D2 = 1 provided that D3 = 0, regardless of the values of the other two lower-
priority inputs. The output for D1 is generated only if higher-priority inputs are 0, and so on
down the priority level. A valid-output indicator, designated by V, is set to 1 only when one or
more of the inputs are equal to 1. If all inputs are 0, V is equal to 0, and the other two outputs of
the circuit are not used.

Truth table of a Priorty Encoder
Inputs Outputs
Ds D2 D1 Do X y A%
0 0 0 0 X X 0
0 0 0 1 0 0 1
0 0 1 X 0 1 1
0 1 X X 1 0 1
1 X X X 1 1 1

Seven Segment Decoder

The 7-segment display, also written as ‘“seven segment display”, consists of seven LEDs
arranged in a rectangular fashion. Each of the seven LEDs is called a segment because when
illuminated the segment forms part of a numerical digit (both Decimal and Hex) to be displayed.
The Common Cathode (CC) — In the common cathode display, all the cathode connections of the
LED segments are joined together to logic “0” or ground. The individual segments are
illuminated by application of a “HIGH”, or logic “1” signal via a current limiting resistor to
forward bias the individual Anode terminals (a-g).

Common Cathode 7-segment Display

ae >|:' a— a
bo—}l%- be— 5
c e H" C] fl Ib
de ’I" d =" i
e e H.' E—ze, ’c
fe H,‘ f — a4 Jop
g opl~ g — ®
"‘\" Comm on
Cathode —

Page 70 of 109

Digital Circuit Design Lab

2. The Common Anode (CA) — In the common anode display, all the anode connections of the
LED segments are joined together to logic “1”. The individual segments are illuminated by
applying a ground, logic “0” or “LOW?” signal via a suitable current limiting resistor to the
Cathode of the particular segment (a-g).

Common Anode 7-segment Display

Comm ot +
+\';/.-'3mode —'n

"

a.-_H_‘ R — a
b.‘%“_ b —
C.U"I-‘ C f b
d'%“—* d =" L

E'KTH— e—‘=e’ ,c
f.v_l-‘ f — d DE

g.‘—“—« il — ®

2 2 2 a 2
— — — — —
= = =
E E E
— _ — —
EI I{: I{: EI I{: I{: I I I I{: EI I{: I{:
o o o o
— — — —

Then for a 7-segment display, we can produce a truth table giving the individual segments

Caution:

1. Remember to properly identify the pin numbers so that no accidents occur.
2. Properly bias the ICs with appropriate voltages to appropriate pins.

Equipment:

1. Trainer Board
2. IC 7432, 7408, 7404
3. Microprocessor Data handbook.

Page 71 of 109

Priority encoder:

Implement a 4x2 priority encoder with basic gates.

Procedure:

1. Write the truth table for 4 x 2 priority encoder.

Digital Circuit Design Lab

D; | D,

D | D | x

2. Write the Boolean function for the output logic.
3. Simplify the Boolean function using K-map.
4. Draw the logic diagram to implement the simplified Boolean function.

D3 D2 D1 DO

X=D2+D3

5

7408 4 ﬁ . Y=D3+D1.D2’
)/

7432

’i ™\, V=D0+D1+D2+D3
13 J

10

7432

Page 72 of 109

7432

Procedure for FPGA:

Priority Encoder

Digital Circuit Design Lab

1. Create a new project and create a new block diagram/schematic file.
2. Compile and simulate the schematic. If everything is ok, assign pins as follows:

INPUT OUTPUT
Signal | Switch | Pin No. Signal | LED Pin No.
DO SWO | PIN N25 V | LEDRO | PIN_AE23
DI SW1 | PIN N26 Y LEDR1 | PIN_AF23
D2 SW2 | PIN P25 X LEDR2 | PIN_AB21]
D3 SW3 | PIN AEIl4

3. After assigning pins, the final schematic should look like the following one:

D3

5 i e

0o i

4. Test the functionality of the designed circuit using switches and LEDs on the FPGA board

Seven Segment Display

The DE2 Board has eight 7-segment displays. These displays are arranged into two pairs and a
group of four, with the intent of displaying numbers of various sizes the seven segments are
connected to pins on the Cyclone II FPGA. Applying a low logic level to a segment causes it to
light up, and applying a high logic level turns it off. Each segment in a display is identified by an
index from 0 to 6, Note that the dot in each display is unconnected and cannot be used.

Page 73 of 109

Digital Circuit Design Lab

Procedure for FPGA:

BCD Decoder

1. Create a new project and create a new block diagram/schematic file. After completing the
schematic, it should look like the following:

7447 _
AO [I{\)I?IFIT A OA OUTPUT > DO
N L RAT B OB{——OUTPUT — Df
¥, A C oC OUTRUT [D2
A3 ("IEJT D oD QUTPUT > D3
~CILTN OE OUTPUT [D4
“CRBIN OF OUTPUT [D5
~CBIN OG- OUTRUT [D6

RBON -

ins BCD TO 7SEG

2. Compile and simulate the schematic. If everything is ok, assign pins as follows:

INPUT OUTPUT

Signal Switch No. Pin No. Signal LED No Pin No.
A0 SWO0 PIN_ N25 DO HEXO[0] PIN_AF10
Al SW1 PIN N26 DI HEXO[1] PIN_ABI12
A2 SW2 PIN P25 D2 HEXO0[2] PIN_ACI2
A3 SW3 PIN AEIl4 D3 HEXO[3] PIN_ADI11
D4 HEXO0[4] PIN AEI11

D5 HEXO[5] PIN V14

D6 HEXO0[6] PIN V13

3. After assigning pins, the final schematic should look like the following one:

4. Test the functionality of the designed circuit using switches and LEDs on the FPGA board.

Page 74 of 109

Digital Circuit Design Lab

Priority Encoder
module priority (D, X, y, V);
input [3:0] D; // InputD3>D2>D1>D0
output reg x, y; // Output: x --> MSB, y --> LSB

output V; // Validity Indicator (NOT reg)

assignV=D[3]| D[2] | D[1] | D[O]; // OR operation

always @ (D)
casex (D)
4'bIxxx: {x,y}=2'b11; //{x,y}=3
4'b01xx: {x,y}=2'010; // {x,y}=2
4'b001x: {x, y}=2'b01; // {x, y}=1
4'b0001: {x, y}=2'000; //{x,y}=0
default: {x, y} = 2'bx; // {x, y} = 2’bxx

endcase

endmodule

Page 75 of 109

Digital Circuit Design Lab

BCD Decoder with 7-segment Display
module seg7(A, D);
input [3:0] A;

output reg [0:6] D; // abcdefg

always @ (A)

case (A)
0: D =7'b0000001; // 7'b 000_0001 (for better readability)
1:D=7'b1001111;
2: D =7'b0010010;
3: D =7'b0000110;
4: D =7'b1001100;
5:D=7'b0100100;
6: D =7'b1100000;
7:D=7'b0001111;
8: D =7'b0000000;
9: D =7'b0001100;
default: D = 7'bx;

endcase

endmodule

Page 76 of 109

Digital Circuit Design Lab

Experiment: 7

Experiment name: Introduction to Sequential Logic Circuits.

Caution:
1. Remember to properly identify the pin numbers so that no accidents occur.
2. Properly bias the ICs with appropriate voltages to appropriate pins.

Equipment:
1. Trainer Board
2. IC 7400, 7402, 7432, 7408, 7404
3. Microprocessor Data handbook

Nor Gate Latch

Two cross-coupled NOR gates can be used as a NOR gate latch. The arrangement is similar to
the NAND latch except that the Q and Q' outputs have reversed positions.

SET B
Q
Set Reset Output —=s Q f—e
0 0 No change
T 0 Q=1 LATCH
0 1 Q=0
11 Invalid* &—R Ql—e
Q *Produces Q = Q = 0.
RESET (b) (c)

(a)
The analysis of the operation of the NOR latch can be performed in the same manner as for the
NAND latch. The results are given in the function table and are summarized as follows:

1. SET = RESET = 0. This is the normal resting state for the NOR latch, and it has no effect
on the output state. O and Q'will remain in whatever state they were in prior to the
occurrence of this input condition.

2. SET =1, RESET = 0. This will always set Q = I, where it will remain even after SET
returns to 0.

3. RESET = 1. SET = 0, this will always clear QO = 0, where it will remain even after RESET
returns to 0.

4. SET =1, RESET = 1, this condition tries to set and reset the latch at the same time, and it
produces Q=" =0. If the inputs are returned to 0 simultaneously, the resulting output

state is unpredictable. This input condition should not be used.

The NOR gate latch operates exactly like the NAND latch except that the SET and RESET
inputs are active-HIGH rather than active-LOW, and the normal resting state is O will be set
HIGH by a HIGH pulse on the SET input, and it will be cleared LOW by a HIGH pulse on the
RESET input.

Page 77 of 109

Digital Circuit Design Lab

Timing Diagram

SET

RESET

Ty T Ta T4 Ts T

Logic Diagram

= i o
,

7402

— ‘\—\LA Q-
. o) >

7402

Procedure:
1. Draw the logic diagram to implement SR Latch.
2. Fill up the table with different combinations of inputs.

NRY

— O |||~
=l ==l "]

3. Observe the combination for which no change and invalid or race conditions arise.

Page 78 of 109

Digital Circuit Design Lab

NAND Gate Latch

The most basic FF circuit can be constructed from either two NAND gates or two NOR gates.
The NAND gate version, called a NAND gate latch or simply a latch, is shown in following
Figure. The two NAND gates are cross-coupled so that the output of NAND-1 is connected to
one of the inputs of NAND-2, and vice versa. The gate outputs, labeled Q andQ’, respectively,
are the latch outputs.

SET @——

Set Reset Output
1 1 No change

0 1 Q=1
1 0 Q=0
0 0 Invalid®

*Produces Q= Q = 1.

RESET #——

(b)

P

1. SET = RESET = 1. This condition is the normal resting state, and it has no effect on the
output state. The Q and Q' outputs will remain in whatever state they were in prior to this
input condition

2. SET =0, RESET = 1. This will always set Q = 1, where it will remain even after RESET
returns to 0.

3. SET = 1. RESET = 0, this will always clear Q = 0, where the output will remain even
after RESET returns HIGH. This is called clearing or resetting the latch.

4. SET =0, RESET = 0, this condition tries to set and reset the latch at the same time, and it
produces Q = Q' =1. If the inputs are returned to 1 simultaneously, the resulting output

state is unpredictable. This input condition should not be used.

Timing Diagram

)
m
w
m
—

.|______
_|__________ —

TE TS B T5 TB

Page 79 of 109

Digital Circuit Design Lab

Logic Diagram

S
1
-3 Q
))
7400
4
6
R < - Q
7400

Procedure:
1. Draw the logic diagram to implement SR Latch.
2. Fill up the table with different combinations of inputs.

0 | ¢

O|—|—[— ||
Ol |O|—=|—=X

3. Observe the combination for which no change and invalid or race conditions arise.
JK Latch

A JK Latch is a refinement of the RS Latch in that the indeterminate state of the RS type is
defined in the JK type. Inputs J and K behave like inputs S and R to set and clear the Latch,
respectively. The input marked J is for set and the input marked K is for reset. When both inputs
J and K are equal to 1, the Latch switches to its complement state, that is, if Q = 1, it switches to
Q =0, and vice versa.

A JK Latch constructed with two cross-coupled NOR gates and two AND gates is shown in
Figure. Output Q is ANDed with K and CP inputs so that the Latch is cleared during a clock
pulse only if Q was previously 1. Similarly, output Q' is ANDed with J and CP inputs so that the
flop-flop is set with a clock pulse only when Q' was previously 1. When both J and K are 1, the
input pulse is transmitted through one AND gate only: the one whose input is connected to the
Latch output that is presently equal to 1. Thus, if Q = 1, the output of the upper AND gate
becomes 1 upon application of the clock pulse, and the Latch is cleared. If Q' = 1, the output of
the lower AND gate becomes 1 and the Latch is set. In either case, the output state of the Latch is
complemented. The behavior of the JK Latch is demonstrated in the characteristic table.

It is very important to realize that because of the feedback connection in the JK Latch, a CP
pulse that remains in the 1 state while both J and K are equal to 1 will cause the output to
complement again and repeat complementing until the pulse goes back to 0. To avoid this

Page 80 of 109

Digital Circuit Design Lab

undesirable operation, the clock pulse must have a time duration that is shorter than the
propagation delay time of the Latch. This is a restrictive requirement, since the operation of the
circuit depends on the width of the pulse. For this reason, JK Latchs are never constructed as
shown in Figure. The restriction on the pulse width can be eliminated with a master-slave or
edge-triggered construction, as discussed in the next section. The same reasoning applies to the T
Latch.

1
K 2 Y 12 2 N
13 | J 51 a
3 .
7411
7402
CP
55
2
2N e 4 Y4l
J 4] &
5—/ ;
7402
7411

Procedure:

1. Draw the logic diagram to implement J-K Latch.
2. Fill up the table with different combinations of inputs.

O | J | K |QOt+1)
0] 010
0 | o0 |1
0| 1] 0
0 | 1] 1
1[0] o0
10 |1
1 [1] 0
L[1]

3. Observe the combination for which no change and invalid or race conditions arise.

Page 81 of 109

D Latch

Design of a D Latch from a J-K Latch.

-—

—CP {
7404

o~

.

»

12

7411

H

7402

7411

Procedure:

1. Draw the logic diagram to implement D Latch.

2. Fill up the table with different combinations of inputs.

0

ot+1)

—_—— OO

D
0
1
0
1

Digital Circuit Design Lab

3. Observe the combination for which no change and invalid or race conditions arise.

Page 82 of 109

Digital Circuit Design Lab

T Latch

Design of a T Latch from a J-K Latch.

T 1% \ 12 2 N Q
7411 H S0
_CP |
3 = 4] Q@
q 6 6
= S c 7402

“an

Procedure:

1. Draw the logic diagram to implement T Latch.
2. Fill up the table with different combinations of inputs.

0 Ot +1)

—_—— O
—|o|—|o|N

3. Observe the output logic.

Page 83 of 109

Digital Circuit Design Lab

Procedure for FPGA:

JK Flip-Flop

1. Create a new project and create a new block diagram/schematic file.

2. Complete the circuit using block for JK Flip-Flop.

Block name: jkff (Library: Primitives = Storage)

J R JKEF &)
JPRNQ OUTPUT [> Q
Clk INRWT
K("T RN
K INPUT .. inst
VcC o .
3. Compile and simulate the schematic.
4. Assign pins using the following table.
INPUT OUTPUT
Signal Switch No Pin No. Signal LED No. Pin No.
Clk KEY3 PIN_W26 Q LEDRO PIN_AE23
J SWI PIN_N26
K SWO0 PIN N25

5. Verify the functionality of your schematic.

Page 84 of 109

Digital Circuit Design Lab

D Flip-Flop

1. Create a new project and create a new block diagram/schematic file.

2. Complete the circuit using block for D Flip-Flop.

Block name: dff (Library: Primitives = Storage)

. CDFF & o
D Yeu— —p PR ————— QUL Q
T I SRR
inst
Clk Wed™———
3. Compile and simulate the schematic.
4. Assign pins using the following table.
INPUT OUTPUT
Signal Switch No Pin No. Signal LED No. Pin No.
Clk KEY3 PIN_W26 Q LEDRO PIN_AE23
D SWO0 PIN_N25

5. Verify the functionality of your schematic.

Page 85 of 109

Digital Circuit Design Lab

T Flip-Flop

1. Create a new project and create a new block diagram/schematic file.

2. Complete the circuit using block for T Flip-Flop.

Block name: tff (Library: Primitives = Storage)

TFF O

. o S
- T R T Q

__ QUTRUT ——— Q

CLRN
inst &
3. Compile and simulate the schematic.
4. Assign pins using the following table.
INPUT OUTPUT
Signal Switch No Pin No. Signal LED No. Pin No.
Clk KEY3 PIN_W26 Q LEDRO PIN AE23
T SW0 PIN_N25

5. Verify the functionality of your schematic.

Page 86 of 109

Digital Circuit Design Lab

Experiment: 8
Experiment name: Introduction to Shifi-Register & Counter.

Shift Register

A register capable of shifting its binary information either to the right or to the left is called shift
register. The logical configuration of a shift register consists of a chain of flip flops connected in
cascade with the output of one flipflop connected to the input of the next flipflop. All flipflops
receive a common clock pulse which causes the shift from one stage to the next.

A register is a digital circuit with two basic functions: data storage and data movement. The
storage capability of a register makes it an important type of memory device. The storage
capacity of the register is the total number of bits (Is and 0Os) of digital data it contains. Each
stage(flipflop) in a shift register represents one bit of storage capacity, therefore the number of
stages in a register determines its storage capacity.

There are many types of shift registers. Here we have described two types —
e Serial Register
» Serial in Serial out Shift register
e Parallel Register

» Parallel in parallel out shift register

Serial in Serial out Shift register

A serial-in serial-out (SISO) shift register is a digital logic circuit where data bits are entered one
at a time through a single input line and are retrieved one at a time from a single output line,
typically using a series of flip-flops connected in a chain. Each clock pulse shifts the existing
data through the flip-flops, with a new bit entering the first flip-flop and the oldest bit exiting the
last flip-flop. This operation effectively delays the data by one clock cycle for each flip-flop in
the register.

Page 87 of 109

Procedure for FPGA:

Digital Circuit Design Lab

1. Create a new project and create a new block diagram/schematic file. After completing the
schematic, it should look like the following:

DFF (5

FRY
D g ®

DFE_¢y

l:E’RI‘ ®

DFF_(5

Q

ins

CLE
inst?

DE’RI ®

CLE>
instZ

QB —tTmrer

ac & —ourror

~. OQUTRPUT

2. Compile and simulate the schematic. If everything is ok, assign pins as follows:

INPUT

OUTPUT

Signal

Switch No.

Pin No.

Signal

LED No.

Pin No.

Clk

KEY3

PIN_W26

QA

LEDR3

PIN AC22

In

SWO0

PIN_N25

QB

LEDR2

PIN AB21

QC

LEDRI1

PIN AF23

QD

LEDRO

PIN AE23

3. Test the functionality of your designed circuit.

Page 88 of 109

Digital Circuit Design Lab

Parallel in parallel out shift register

For a register with parallel input, the bits are entered simultaneously in to their respective stages
on parallel lines rather than on a bit by bit basis on one line as serial data inputs. Also the data
bits are taken out parallel manner. Once the data are stored, each bit appears on its respective
output line and all bits are available simultaneously rather than on a bit by bit basis as with the
serial output.

Procedure for FPGA:

1. Create a new project and create a new block diagram/schematic file. After completing the
schematic, it should look like the following:

= - o4 [
=] [} =] [=]

FBH FEH FER FER
jil o D a7 il o il a7
: Manual_clock | — =Pl
CLEN CLEM CLEM CLEM
*

T
TOOTPOT
TOTPOT -

I —
L —
02 oo
Ik —

2. Compile and simulate the schematic. If everything is ok, assign pins as follows:

INPUT OUTPUT
Signal Switch No. Pin No. Signal LED No. Pin No.
DO SWO0 PIN_N25 Q0 LEDRO PIN AE23
DI SW1 PIN N26 Q1 LEDRI PIN AF23
D2 SW2 PIN P25 Q2 LEDR2 PIN_ AB21
D3 SW3 PIN AEIl4 Q3 LEDR3 PIN_ AC22
Manual_clock KEY3 PIN W26

Page 89 of 109

Digital Circuit Design Lab

SHIFT REGISTER COUNTER

A shift register counter is basically a shift register with the serial output connected back to the
serial input to produce special sequences. These devices are often classified as counters because
they exhibit a specific sequence of states. Two of most common types of shift register counters,
the Johnson counter and the ring counter, are discussed here.

JOHNSON COUNTER

In a Johnson counter the complement of the last flipflop is connected back to the D input of the
first flipflop. This feedback arrangement produces a characteristic sequence of states which is
shown in the following table for a 4-bit device. 4-bit sequence has a total of eight states or bit
patterns.

Clock Pulse QA QB QC QD
0 0 0 0 0
1 1 0 0 0
2 1 1 0 0
3 1 1 1 0
4 1 1 1 1
5 0 1 1 1
6 0 0 1 1
7 0 0 0 1

Table: 4-bit Johnson counter sequences.

Page 90 of 109

Procedure for FPGA:

1.

Digital Circuit Design Lab

Create a new project and create a new block diagram/schematic file. After completing the
schematic, it should look like the following:

Clk

DFF .. DFE_&DFE_Q DFF_ &y %
D PRIQ Y C PRI‘C ® T PRIQ D E'Rlc :
— \{\)IEIFIT iinst4. .
ins inag‘l.{‘?RL . \ni’:E:RL \nﬁ;ﬁw
3 kI 8y 3
2. Compile and simulate the schematic. If everything is ok, assign pins as follows:
INPUT OUTPUT
Signal Switch No. Pin No. Signal LED No. Pin No.
Clk KEY3 PIN_W26 QA LEDR3 PIN_ AC22
QB LEDR2 PIN_AB21
QC LEDRI1 PIN_AF23
QD LEDRO PIN_AE23

3. Test the functionality of the designed circuit using switches and LEDs on the FPGA board.

Page 91 of 109

RING COUNTER

Digital Circuit Design Lab

The ring counter utilizes one flipflop for each state in the sequence. It has the advantage that
decoding gates are not required.

Clock Pulse QA QB QC QD
0 1 0 0 0
1 0 1 0 0
2 0 0 1 0
3 0 0 0 1
Procedure for FPGA:

1. Create a new project and create a new block diagram/schematic file. After completing the
schematic, it should look like the following:

Brocet e L . ‘ R R
L DFF &y Ll DRE A CODFE A L DRE A
DR I AN AN o AN ST .
b o o oo % D @ A SR IR <Y R a— 4
Cik C o jpr———o
I DR crom| || PR I . — N cronl o
oo linstTY : ©linst®’ ol linetdY C

inst

. :QUTPUT i

5 b 5
13 5 5
3 8
2. Compile and simulate the schematic. If everything is ok, assign pins as follows:
INPUT OUTPUT
Signal Switch No. Pin No. Signal LED No. Pin No.
Clk KEY3 PIN W26 QA LEDR3 PIN AC22
Preset SWo PIN N25 QB LEDR2 PIN AB21
QC LEDRI PIN AF23
QD LEDRO PIN AE23

Page 92 of 109

Digital Circuit Design Lab

Experiment: 9
Experiment name: /ntroduction to CMOS INVERTER

Objectives: Verify NOT, NAND, NOR gate using CMOS
Equipment: Power supply, digital multimeter, potentiometer, and CMOS.

Background:

CMOS is currently the most popular digital circuit technology. CMOS logic circuits are available
as standard SSI and MSI packages for use in conventional digital system design. CMOS is also
used in general-purpose VLSI circuits such as memory and microprocessors.

The CMOS Inverter is shown in figure 1. It consists of an N-channel MOSFET and a P-channel
MOSFET. The input is applied to the two gates. The substrate of each transistor is connected to
the source, and therefore no body effect for both transistors. When Vi is high, Qn is ON and Qp is
OFF. The output is low. If Vi is low, Qn is OFF and Qp is ON. The output is high with Vop.

Procedure:
1. Connect the circuit shown in Figure 1. Set the supply to Vpp 5V.
2. Verity the table for different values of inputs.
3. Connect the circuit shown in Figure 2. Set the supply to Vpp 5V.

4. Complete table 2 for different values of inputs.

Page 93 of 109

Digital Circuit Design Lab

VDD

Vi Y
QPPM OS

v,]—Y

Q’\I}IMOS

v

Figure 1: CMOS as an Inverter Table 1: Truth Table verification for NAND and NOR

VDD

Vx, 41 T,
r, | 7,

1
T e I

o " Vi
] NI N
X, T,
(a) :If‘ (b) =
Figure 2: CMOS as a) NAND b) NOR
CMOS as NAND Gate CMOS as NOR Gate

Vxi Vx2 Vi Vxi Vx2 Vi

0 0 0 0

0 1 0 1

1 0 1 0

1 1 1 1

Table 2: Truth Table verification for NAND and NOR

Page 94 of 109

Digital Circuit Design Lab

Report:

Solve the following exercises on separate sheets of paper and submit your solution
3. Analyze the circuit of Fig.1.
4. Discuss the working principle of CMOS and NAND and NOR gate

5. Design Ex-OR and Ex-NOR using CMOS.

Page 95 of 109

Digital Circuit Design Lab

Experiment: 10
Experiment name: Introduction to EMITTER-COUPLED LOGIC (ECL)

Objective:

To demonstrate the operation of a simplified version of the ECL gate made by using discrete
components.

Equipments: Power supply, digital multimeter, potentiometer (100 kQ), diodes, transistors and
resistors.

Background:

The first part of this experiment deals with the reference voltage used in the ECL circuit. The
experimentally measured value will be compared with the theoretically calculated value. In the
second part, a two-input ECL gate will be made excluding the emitter-follower output stages.

Procedure:

1. Construct the circuit as shown in figurel. Adjust the potentiometer to get -5V at VEE.

2. Measure the reference voltage V.

3. Construct the simplified ECL gate excluding the output stages as shown in Figure 2.

4. Let V(1) =-0.75 V and V(0) = -1.75 V. For different combinations of voltages, measure the
two output voltages and record their values in Table 1. Also, measure the voltage at point E in the
circuit shown in Figure 2.

Table I: Measurements of voltages for the ECL gate

V4 (Volts) Vg (Volts) Vor (Volts) Vo (Volts) Ve (Volts)
- 1.75 - 1.75
-1.75 -0.75
-0.75 - 1.75
-0.75 -0.75

Page 96 of 109

Digital Circuit Design Lab

BC550 %
VR Use the potentiometer if -5V
supply is not available
5.6kQ

|
I
I
|
I
I
I
I
I
|

Vee

2on§ 270€ -
VOI V6‘2_
vV vV
2 Bfn o on}——n
E
gszoﬂ
54

Figure 2 : Simplified ECL gate.

Page 97 of 109

Digital Circuit Design Lab

Table II : Output voltage Vp; versus the input voltage F/, for V3 set to logic '0'
v.(vy oo [-02] -03] -04 1] -057] -061]-07 [-08] -09
Vo2 (V)
Vi (V) -1.0 -1.1 -1.2 -13 -14 -1.5 -16 | -18 -2.0
Voz (V)

6. Using the results obtained in step 4 above , plot the voltage transfer characteristics (Vo2 versus
Va). From these characteristics determine the noise margins by completing the entries in Table
1.

Table I1I: Determination of the noise margins for the ECL gate.
Vor (V) Vi (V) NMg (V) Vi (V) Voo (V) NM; (V)

7. Disconnect the circuit and measure the resistances of all the resistors used in the experiment.
Record their values.

Discussion:

1. Compare the experimentally obtained value of reference voltage Vr with the theoretically
calculated value. Explain the difference between the two values.

2. On the basis of measured voltages in Table I, identify which output is for OR operation and
which output is for NOR operation .

3. Using the measured voltages in Table I, determine the mode of operation of each transistor for
various combinations of input voltages. Compare your results with theoretically expected modes
of operation for these transistors.

4. Why the two levels of output voltage are not the same as the logic '0' and logic '1' voltages
used in the experiment. Explain

Report:

Solve the following exercises on separate sheets of paper and submit your solution

1. Analyze the circuit of Fig.2

2. Simulate circuit of Fig. 2, using PSPICE.

Page 98 of 109

Digital Circuit Design Lab

ANNEXURE I

Installing USB-Blaster driver software on Windows 7

1. Set the RUN/PROG switch to the RUN position.

2. Connect the supplied USB cable to the USB-Blaster port of the FPGA and to a USB port of
the PC. Also connect the 9V power supply adapter and turn the power switch ON.

At this point you should observe the following:
* All user LEDs are flashing
» All 7-segment displays are cycling through the numbers 0 to F
* The LCD display shows Welcome to the Altera DE2 Board

3. Open Device Manager.

A Computer Management
File Action View Help
=% @ HEB

é- Computer Management (Local | v % DESKTOP-BVV843R Actions
v [[’j System Tools [C.ompL.lter e —
@ Task Scheduler - Disk drives
{2] Event Viewer & Display adapters More Actions
| Shared Folders - DVD/CD-ROM drives
Local Users and Groups Al Hurnan Interface Devices
IZ%‘E‘:JZI Performance =m |DE ATA/ATAPI controllers
M Device Manager =2 Keyboards
v (&5 Storage w Mice and other pointing devices
= Disk Management [Monitors
T4 Services and Applications [Network adapters

~ BY Other devices
B USB-Blaster
§ Ports (COM & LPT)
™ Print queues
1 Processors
B Software devices
| Seound, video and game controllers
& Storage controllers
¥@ System devices
v ' Universal Serial Bus controllers
i Intel(R) USBE 3.0 eXtensible Host Controller - 1.0 (Microsoft)
§ USB Composite Device
§ USB Root Hub (xHCI)

Page 99 of 109

Digital Circuit Design Lab

4. Note that, USB-Blaster is listed under Other devices. Right click on it and select Update
Driver Software. Update Driver Software —USB-Blaster window will open up.

x

B Update Driver Software - USB-Blaster

How do you want to search for driver software?

—> Search automatically for updated driver software
Windows will search your computer and the Internet for the latest driver software
vice, unless you've disabled this feature in your device installation

for your
settings.

—> Browse my computer for driver software
Lecate and install driver seftware manually.

Cancel

5. Select Browse my computer for driver software.

6. Find the location of USB-Blaster driver software from the installation directory of Quartus
II. It will be under

<your installation directory>\altera\90sp1\quartus\drivers\usb-blaster

forQuartus I1 9.0 sp1 web edition.

Page 100 of 109

Digital Circuit Design Lab

4 B Update Driver Software - USB-Blaster

Browse for driver software on your computer

Search for driver software in this location:

| Chaltera\90sp1\quartus\drivers\usb-blaster w Browse...

Include subfolders

—> Let me pick from a list of device drivers on my computer
This list will show installed driver software compatible with the device, and all driver
software in the same category as the device,

Cancel

7. Select Install this software anyway if Windows Security prompt appears.

B Update Driver Software - Altera USB-Blaster

Windows has successfully updated your driver software
Windows has finished installing the driver software for this device:

- Altera USB-Blaster

Close

8. After successful installation, Altera USB-Blaster will appear under Universal Serial Bus

controllers in Device Managerwindow:

Page 101 of 109

Digital Circuit Design Lab

& Computer Management - O *
File Action View Help

== NEE HR P EX®

;EJ Computer Management (Local | v :.'.-_ DESKTOP-BVVE43R Actions
v m System Tools > C.omplfter A — .
> ® Task Scheduler 5 s Disk drives
> {2 Event Viewer » [Display adapters More Actions 4
> @l Shared Folders > o2 DVD/CD-ROM drives
> &% Local Users and Groups > @ Human Interface Devices
> @ Performance > =g |IDE ATAJATAPI controllers
& Device Manager > Keyboards
v 23 Storage > g Mice and other pointing devices
= Disk Management » [Monitors
> i-; Services and Applications > [Network adapters
> i Ports (COM & LPT)
» [Print queues
> ﬁ Processors
» B Software devices
> W Sound, video and game controllers
> & Storage controllers
> 3 System devices
v i Universal Serial Bus controllers
§ Altera USB-Blaster
i Intel(R) USBE 3.0 eXtensible Host Controller - 1.0 (Microsoft)
i USE Compaosite Device
§ USB Root Hub (xHC)
£ >

Page 102 of 109

Digital Circuit Design Lab

ANNEXURE II

Using the LEDs and Switches

The DE2 board provides four pushbutton switches. Each of these switches is debounced using a
Schmitt Trigger circuit. The four outputs called KEYO, ..., KEY3 of the Schmitt Trigger device
are connected directly to the Cyclone II FPGA. Each switch provides a high logic level (3.3
volts) when it is not pressed, and provides a low logic level (0 volts) when depressed. Since the
pushbutton switches are debounced, they are appropriate for use as clock or reset inputs in a
circuit. There are also 18 toggle switches (sliders) on the DE2 board. These switches are not
debounced, and are intended for use as level-sensitive data inputs to a circuit. Each switch is
connected directly to a pin on the Cyclone II FPGA. When a switch is in the DOWN position
(closest to the edge of the board) it provides a low logic level (0 volts) to the FPGA, and when
the switch is in the UP position it provides a high logic level (3.3 volts).

There are 27 user-controllable LEDs on the DE2 board. Eighteen red LEDs are situated above
the 18 toggle switches, and eight green LEDs are found above the pushbutton switches (the 9th
green LED is in the middle of the 7-segment displays). Each LED is driven directly by a pin on
the Cyclone II FPGA; driving its associated pin to a high logic level turns the LED on, and
driving the pin low turns it off.

B 08 FAVALS A SUAL
9 [12 [)y) 2 ™\ 1
Al Ay i o LiIaAA-2
4 Hf (4 N[A ,'k". A N .
] 7% A
BT b W IO S WO b ’ WOTOE b ‘ ‘ l N
7

Figurel: Schematic diagram of push button and toggle switches

Page 103 of 109

Digital Circuit Design Lab

2
|
el A
rons Lron
e
roms Lron RN
\ED12] a
| LEerE0 9 AR 3
ronn Lron ¥ iara 1 AVAA or-
1 L Lurd a o~ -
FOR LEOR
o 30
Leons LEOR
P
romn Lron RNT
-
: 1§ s Fo~ A a
- rOos o - A o
- A t\/’\/‘* 3
330
LEOR1O LEOR -
| LEDR
2 _LEOR2
a 1
LEOR1A
B
LFDNI4 Lron
s LEDNS LEon
N~ L - 5
PR AVENA I
u Ay i LEOKTS LEOR
<1 A +*Ni s 4
¥

Figure 2: Schematic diagram of LEDs

Signal Name FPGA Pin No. Description
SWIO] PIM_MN25 Toggle Switch[0]
SWI1] PIN_M28 Toggle Switch[1]
SWI2] PIN_P25 Toggle Switch[2]
SWI3] PIN_AE14 Toggle Switch[3]
SWd] PIN_aF14 Toggle Switch[4]
SWE] PIM_AD13 Toggle Switch[S]
SWIE] PIN_AC13 Toggle Switch(s]
SWIT] PIM_C13 Toggle Switch(7]
SWIE] PIN_313 Toggle Switch[3]
SWE] PIN_A13 Toggle Switch[d]
SWI10] PIN_N1 Toggle Switch[10]
SWI11] PIN_P1 Toggle Switch[11]
SWI12] PIN_P2 Toggle Switch[12]

SW[13] PIN_T7 Toggle Switch[13]
SW[14] PIN_U3 Toggle Switch[14]
SW[15] PIN_lU4 Toggle Switch[15]
SW16] PIMN_\1 Toggle Switch[18]
SW1T] PIN_2 Toggle Switch[17]

Tablel: Pin Assignments for toggle switches

Page 104 of 109

Digital Circuit Design Lab

Signal Mame FPGA Pin No. Description
KEY[0] PiM_G26 Pushbution[0]
KEY[1] PIN_MN23 Pushbution[1]
KEY[2] FIN_P23 Pushbution[2]
KEY[3] BIN_W26 Pushbution[3]

Table 2: Pin Assignments for push button switches

Slgnal Mame | FPGA Pin No. Description
LEDRID] FIN_AE23 LED R[]
LEDR1] PIN_gF23 LED Red[1]
LEDR]Z] PIN_AE21 LED Red[2]
LEDRJZ] PIN_ACIZ LED Red[3]
LEDRJ4] PIN_ADZZ LED Red[4]
LEDRE] PIN_ADZ3 LED Red[5]
LEDIRIE] PIN_AD LED R[]
LEDRT] PIN_ACH LED Red[7]
LEDRE] FIN_AA14 LED Red[E]
LEDIRIE] PIN_¥13 LED Red[d]

LEDR]10] PIN_AAI13 LED Red[10]
LEDR[11] PIN_AC14 LED Red[11]
LEDR[12] PIN_AD1S LED Red[12]
LEDR[13] PIN_AE1E LED Red[13]
LEDR[14] BIN_&F13 LED Red]14]
LEDR[15] FIN_AE12 LED Red[13]
LEDR] 18] PIN_AE1Z LED Red[15]
LEDR[17] PIN_AD12Z LED Red[17]
LEDG[D] FIN_AE2Z LED Greenn]
LEDE[] PIN_&F23 LED Graen1]
LEDE[Z) PIN_W13 LED Graenz]
LEDG[E] PIN_\'13 LED Green3]
LEDE[] BIN_L143 LED Graend]
LEDGE[E] BIN_LMT LED Graen(s]
LEDG[E] FIN_AA2D LED GreenE]
LEDE[T] PIN_¥13 LED Graen7]
LEDG[E] PIN_¥12 LED Graen(E]

Table 3: Pin Assignments for LEDs

Using the 7-segment Displays

The DE2 Board has eight 7-segment displays. These displays are arranged into two pairs and a
group of four, with the intent of displaying numbers of various sizes. As indicated in the
schematic in Figure 4.6, the seven segments are connected to pins on the Cyclone II FPGA.
Applying a low logic level to a segment causes it to light up, and applying a high logic level

Page 105 of 109

Digital Circuit Design Lab

turns it off. Each segment in a display is identified by an index from 0 to 6, with the positions
given in Figure 4.7. Note that the dot in each display is unconnected and cannot be used. Table
4.4 shows the assignments of FPGA pins to the 7-segment displays.

AL B
Rl e
R Y
[SR TR g@ - AL
CoiSR R e - A
SRl T
T Y
e

Figure 3: Schematic diagram of 7 segment displays

Page 106 of 109

Digital Circuit Design Lab

Signal Name FPGA Pin No. Descripticn
HEXD[D] FPIN_&F10 Seven Segment Digit 0[0]
HEXD[1] PiM_AB12 Seven Segment Digit 0{1]
HEXD[2] PIN_AC12 Seven Segment Digit 0{2]
HEXD[3] PIN_AD11 Seven Segment Digit 03]
HEX0[4] PIM_AE11 Seven Segment Digit 0[4]
HEX0[5] PIM_W14 Seven Segment Digit 0[5]
HEX0[E] PIM_W13 Seven Segment Digit 0[6]
HEX1[0] PIM_W20 Seven Segment Digit 1[0]
HEXA1[1] PIM_w21 Seven Segment Digit 1[1]
HEX1[2] PIN_W21 Seven Segment Digit 1[2]
HEX1[3] PIM_v22 Seven Segment Digit 1[3]
HEX1[4] PiM_AA24 Seven Segment Digit 1[4]
HEX1[3] PIM_AAZ3 Seven Segment Digit 1[5]
HEX1[8] PiM_AB24 Seven Segment Digit 1[6]
HEXZ2[0] PIM_ABZ3 Seven Segment Digit 2[0]
HEX2[1] PIM_Wv22 Seven Segment Digit 2{1]
HEX2[2] PIN_AC25 Seven Segment Digit 2{2]
HEX2[3] PIN_AC2E Seven Segment Digit 2{3]
HEX2[4] PIM_AB2E Seven Segment Digit 2[4]
HE*2[5] PIM_AB25 Seven Segment Digit 2[5]
HE*2[8] PIN_v24 Seven Segment Digit 2[5]
HE*3[0] PIMN_2Z3 Seven Segment Digit 3[0]
HEX3[1] PIM_AA2S Seven Segment Digit 3[1]
HEX3[2] PIN_AAZE Seven Segment Digit 3[2]
HEX3[3] PIM_v26 Seven Segment Digit 3[3]
HEX3[4] PIMN_¥25 Seven Segment Digit 3[4]
HE*3[5] PIN_Lk22 Seven Segment Digit 3[5]
HEX3[B] PIM_W24 Seven Segment Digit 3[6]
HEX4[0] PIN_US Seven Segment Digit £]0]
HE*4[1] PIN_LM Seven Segment Digit £[1]
HEx4[2] PIN_LEZ2 Seven Segment Digit 4[2]
HEX4[3] PIM_T4 Seven Segment Digit £[3]
HE*4]4] PIN_RT Seven Segment Digit £[4]
HEx4[5] PIN_RS Seven Segment Digit 4[5]
HEX4[5] PIM_T3 Seven Segment Digit £]6]

Page 107 of 109

Digital Circuit Design Lab

HEXS[0] FIM_T2 Seven Segment Digit S[0]
HEX5[1] FIN_Pg Seven Segment Digit 5[1]
HEXS[2] PIM_PT Seven Segment Digit 5[2]
HEX5[3] FIM_TH Seven Segment Digit 5[3]
HEX5[4] PIN_RS Seven Segment Digit 5[£]
HEXS[5] PIN_R4 Seven Segment Digit S[5]
HEx5[8] PIN_R:3 Seven Segment Digit 5[]
HEX&[0] PIN_R2 Seven Segment Digit 6[0]
HEXE[1] PIM_P4 Seven Segment Digit 6[1]
HEXE[2] PIN_P3 Seven Segment Digit 6[2]
HEXE[3] PIM_M2 Seven Segment Digit 6[3]
HEXE[4] PIM_M3 Seven Segment Digit 6[4]
HEXE[5] PIMN_MS5 Seven Segment Digit 6[5]
HEXE[8] PIM_M4 Seven Segment Digit 6]5]
HEXTIO] PIN_L3 Seven Segment Digit 70]
HEXT[1] PIN_L2 Seven Segment Digit T[1]
HEXT[2] PIM_LS Seven Segment Digit 7[2]
HEXTT3] PIM_LE Seven Segment Digit 7[3]
HEX7T[4] PIM_LY Seven Segment Digit 7]4]
HEXT[3] FIMN_P4g Seven Segment Digit 73]
HEXT[E] PIN_NGS Seven Segment Digit 7]6]

Table 4: Pin diagram for seven segment displays

Page 108 of 109

Digital Circuit Design Lab

REFERENCE

. Digital logic and computer design by M. Morris Mano.
. Digital fundamentals by Thomas L. Floyd.

. Fundamentals of Digital Logic with Verlog Design by Stephen
Brown and Zvonko Vranesic.

. Digital systems principles and applications by Ronald J. Tocci.

Page 109 of 109

	Table of Contents
	Experiment: 1
	Experiment: 2
	CAD System
	Experiment: 3
	Experiment: 4
	Experiment: 5
	Experiment: 6
	Experiment: 7
	Experiment: 8
	Experiment: 9
	Experiment: 10
	ANNEXURE I
	ANNEXURE II
	REFERENCE

