

EEE – 2104

Digital Circuit Design Lab

Digital Circuit Design Lab

Page 2 of 109

AHSANULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY

DEPARTMENT

OF

ELECTRICAL AND ELECTRONIC ENGINEERING

EEE- 2104

 Digital Circuit Design Lab

Edition 2025

Digital Circuit Design Lab

Page 3 of 109

Table of Contents

Table of Contents .. 3

Experiment: 1 .. 4

Experiment: 2 .. 12

CAD System ... 16

Experiment: 3 .. 43

Experiment: 4 .. 50

Experiment: 5 .. 57

Experiment: 6 .. 70

Experiment: 7 .. 77

Experiment: 8 .. 87

Experiment: 9 .. 93

Experiment: 10 .. 96

ANNEXURE I ... 99

ANNEXURE II .. 103

REFERENCE .. 109

Digital Circuit Design Lab

Page 4 of 109

Experiment: 1

Experiment name: Introduction to different digital ICs.

Introduction:

In this experiment you will be introduced to different digital ICs that will be used in this digital

lab to perform different functions and also the function of each IC. You are asked to memorize

the following associated with each IC.

1. IC number

2. IC name

3. Total number of pins

4. ccV pin number

5. Ground pin number

IC number IC Name Gate Name Gate Schematic view

7404 Hex Inverter NOT/INVERTER
7404

1 2

7408 Quad 2-input AND AND

7408

1

2
3

7432 Quad 2-input OR OR

7432

1

2
3

7400 Quad 2-input NAND NAND

7400

1

2
3

7402 Quad 2-input NOR NOR

7402

2

3
1

7486 Quad 2-input XOR XOR

7486

1

2
3

Digital Circuit Design Lab

Page 5 of 109

The INVERTER/NOT Gate

The output of an inverter is always the complement (opposite) of the input.

The AND Gate

The output of an AND gate is HIGH only when all inputs are HIGH.

Truth table

0 = LOW

1 = HIGH

Boolean expression

Truth table

0 = LOW

1 = HIGH Boolean expression

3 Input AND Gate

Pulsed Waveforms

B A X

0 0 0

0 1 0

1 0 0

1 1 1

Digital Circuit Design Lab

Page 6 of 109

The OR Gate

The output of an OR gate is HIGH whenever one or more inputs are HIGH.

The NAND Gate

Truth table

0 = LOW

1 = HIGH

Boolean expression

3 Input OR Gate

Pulsed Waveforms

B A X

0 0 0

0 1 1

1 0 1

1 1 1

Digital Circuit Design Lab

Page 7 of 109

The output of a NAND gate is HIGH whenever one or more inputs are LOW.

The NOR Gate

Truth table

0 = LOW

1 = HIGH

Boolean expression

3 Input NAND Gate

Pulsed Waveforms

B A X

0 0 1

0 1 1

1 0 1

1 1 0

Digital Circuit Design Lab

Page 8 of 109

The output of a NOR gate is LOW whenever one or more inputs are HIGH.

Exclusive-OR Gate

Truth table

0 = LOW

1 = HIGH

Boolean expression

Boolean expression

Truth table

0 = LOW

1 = HIGH

3 Input NOR Gate

Pulsed Waveforms

B A X

0 0 0

0 1 1

1 0 1

1 1 0

B A X

0 0 1

0 1 0

1 0 0

1 1 0

Digital Circuit Design Lab

Page 9 of 109

The output of an XOR gate is HIGH whenever the two inputs are different.

Equipment:
1. Trainer Board

2. IC 7400,7402,7404,7408,7432,7486

3. Microprocessor Data handbook

Procedure:
1. Take any of the following ICs. From microprocessor data handbook find the name of the IC,

total number of pins that it has, ccV pin and ground pin.

IC Number IC name Total pin ccV pin Ground pin

7400 NAND 14 14 7

7402 NOR 14 14 7

7404 NOT 14 14 7

7408 AND 14 14 7

7432 OR 14 14 7

7486 XOR 14 14 7

Pulsed Waveforms

Digital Circuit Design Lab

Page 10 of 109

2. Note the number of gates each IC has from the handbook.

3. Now fill up the following table:

Input

A

Input

B

7404

NOT

AY =

7432

OR

BAY +=

7402

NOR

BAY +=

7486

XOR

BAY =

7408

AND

ABY =

7400

NAND

ABY =

0 0

0 1

1 0

1 1

7404

1 2 3 4 5 6
7 GND

VCC

13 12 11 10 9 814

7408

1 2 3 4 5 6 7 GND

VCC

13 12 11 10 9 814

7432

1 2 3 4 5 6 7 GND

VCC

13 12 11 10 9 814

7400

1 2 3 4 5 6 7 GND

VCC

13 12 11 10 9 814

7402

1 2 3 4 5 6 7 GND

VCC

13 12 11 10 9 814

7486

1 2 3 4 5 6 7 GND

VCC

13 12 11 10 9 814

Digital Circuit Design Lab

Page 11 of 109

Implementation Technology:

The first schemes for building logic gates with MOSFETs became popular in the 1970s and

relied on either PMOS or NMOS transistors. Here, we will learn how logic circuits can be built

using NMOS. Such circuits are known as NMOS circuits. Here we will use the concept of

transistor switching to understand the basic principle of logic gates implementation.

(a) NOT Gate (b) NAND Gate (c) NOR Gate

Report:

1. How can you make a three input AND/OR/XOR gate with a two input AND/OR/XOR

gate?

2. Is it possible to make a three input NAND/NOR gate with two input NAND/NOR gate?

Justify your answer.

3. Design AND & OR gate using N-MOSFET & Resistance.

Digital Circuit Design Lab

Page 12 of 109

Experiment: 2

Experiment name: Introduction to Combinational Logic and K-map Minimization.

Introduction:

Logic design basically means the construction of appropriate function, presented in Boolean

algebraic form, then edification of the logic diagram, and finally choosing of available ICs and

implementing the IC connection so that the logic intended is achieved. The efficiency in

simplifying the algebra leads to less complicated logic diagram, which in the end leads to easier

IC selection and easier circuit implementation.

Caution:

1. Remember to properly identify the pin numbers so that no accidents occur.

2. Properly bias the ICs appropriate voltages to appropriate pins.

Equipment:

1. Trainer Board

2. IC 7404,7408,7432

Job:

Implement of function –

2 5 6 7

.1 .1 .1

() () ()

(2,5,6,7)

f AB BC CA

AB BC CA

AB C C BC A A CA B B

ABC ABC ABC A BC ABC AB C

ABC ABC A BC AB C

A BC AB C ABC ABC

m m m m

m

= + +

= + +

   = + + + + +

    = + + + + +

   = + + +

   = + + +

= + + +

=

.1

1

x x

x x

x x x

=

+ =

+ =

Digital Circuit Design Lab

Page 13 of 109

Truth Table:

Row Minterm

Input Output

A B C f

0 m0 = A′ B′ C′ 0 0 0 0

1 m1 = A′ B′ C′ 0 0 1 0

2 m2 = A′ B′ C′ 0 1 0 1

3 m3 = A′ B′ C′ 0 1 1 0

4 m4 = A′ B′ C′ 1 0 0 0

5 m5 = A′ B′ C′ 1 0 1 1

6 m6 = A′ B′ C′ 1 1 0 1

7 m7 = A′ B′ C′ 1 1 1 1

Circuit Diagram:

f = AB + BC′ + CA

Digital Circuit Design Lab

Page 14 of 109

k-Map:

 BC

A

00 01 11 10

0 0 0 0 1

1 0 1 1 1

f = AC + BC′

Circuit Diagram:

A B C

f

1

1

2

21

2

3

3

4

5

6

AC BC′

Digital Circuit Design Lab

Page 15 of 109

Procedure:

1. Draw logic diagram to implement the function.

2. Select ICs from the equipment list.

3. Note the output logic for all combinations of inputs.

4. Now fill out the truth table for that function.

5. Simplify the function in POS and in SOP form using K-map.

6. Repeat step-1, 2 and 3.

Report

1. f (A, B, C, D) = ∑ m (0, 1, 4, 5, 12, 13, 14)

2. f (A, B, C) = ∏ M (0, 1, 3, 4)

For both the functions do the following

• Simplify the function in POS form and in SOP form.

• Draw logic diagram to implement the function.

• Select ICs and mention the pin number in the diagram.

• Show the truth table of the system.

Digital Circuit Design Lab

Page 16 of 109

CAD System

Experiment name: Introduction to FPGA, Quartus Software & Verilog HDL

System Synthesis:

• CAD Tool: Quartus II (Version - 13.0sp1 Web Edition)

• Hardware Description Language (HDL): Verilog

• Development Board: Altera FPGA Board

Procedure:

For installation procedure, go to Annexure I.

Design Flow:

1. Start: Project

2. Design: Schematic Verilog

3. Verification: Simulation FPGA Board

Function Implementation:

Here, we are going to implement the following function –

f = AC + BC′

Digital Circuit Design Lab

Page 17 of 109

Project in Quartus II:

P1. Open Quartus II 13.0 sp1 web edition.

P2. Go to File→New Project Wizard.

P3. The following window will open up. Click Next.

Digital Circuit Design Lab

Page 18 of 109

P4. In the next window that appears, change the default working directory to your working

directory (e.g. E:\Sumit\DLD) and give a name to this project.

When giving name of project and top-level design entity, keep in mind these two important

points –

 ** Space in the name is not allowed.

** It is recommended that top-level design entity file should have the same name as the

name of the project.

P5. In the next window, you may include files to your project, which we will demonstrate later,

for now, click Next.

Digital Circuit Design Lab

Page 19 of 109

P6. In the following window, select Cyclone II under Device family and type EP2C35F672C6

in Name filter. Double click on it under Available devices so that Specific device selected in

“Available devices’ list is selected under Target Device.

P7. Click Finish. This completes the steps for creating a project file.

Digital Circuit Design Lab

Page 20 of 109

Block Diagram/Schematic Design:

B1. Go to File→New. Select Block Diagram/Schematic File and click OK.

A blank block diagram window will appear.

Digital Circuit Design Lab

Page 21 of 109

B2. To implement the circuit, we will need an AND, OR & NOT gate. From the menu bar, click

on icon for Symbol Tool, or alternatively double clock on the blank schematic window.

B3. The following window will appear. Under Libraries, click on the plus icon beside

c:/altera/…

B4. After expanding the plus icon, you will see the following library directories:

Digital Circuit Design Lab

Page 22 of 109

B5. Click on the plus sign beside primitives.

B6. Different Logic Gates (AND, OR, NOT etc.) are under logic directory, input and output pins

are under pin directory, and flip-flops are under storage directory. Go to logic directory and

select and2 from the list for a 2-input AND gate and click OK.

B7. Then go to block diagram window and place the symbol on it.

B8. Do the same for the OR & NOT gate.

Digital Circuit Design Lab

Page 23 of 109

B9. Now, click on the drop-down menu on Pin Tool at toolbar and select Input/Output pins.

B10. You can click on the pin names and rename them.

Digital Circuit Design Lab

Page 24 of 109

B11. Now, in the block diagram window, move cursor to input/output pins on gates and you will

see wiring icon showing up, or you can select Orthogonal Node Tool from the left menu bar.

B12. Now, wire the gates and pins to construct the circuit. When completed, it should look like

the following –

B13. Click on start compilation button on the top menu bar.

B14. Click Yes, if you are prompted to save the block diagram.

Digital Circuit Design Lab

Page 25 of 109

B15. File name of top-level design entity is recommended be the same as that of the project

name (e.g. SOPfunc). Click Save.

B16. If compilation is successful, you will get a message like the following. Click OK.

Digital Circuit Design Lab

Page 26 of 109

B17. Ignore warnings for now. Compilation report-flow summary will present you with the

details:

If any error occurs, you will find them at the bottom window.

In case an error occurs, find the error on the block diagram and rerun compilation.

Digital Circuit Design Lab

Page 27 of 109

Verilog HDL File:

V1. Click on File → New… & a New Window will pop-up. Select Verilog HDL File under

Design Files and clink OK.

V2. A blank window will appear where we will write our Verilog HDL code.

Digital Circuit Design Lab

Page 28 of 109

V3. Complete the Code and Save the File.

*** Make sure Module Name, Verilog File Name, Top-level Entity (Project) Name is eactly

same. (i.e. SOPfunc in these 3 cases)

V4. Click on start compilation button on the top menu bar.

V5. If compilation is successful, you will get a message like the following. Click OK.

Digital Circuit Design Lab

Page 29 of 109

V6. Click On Tools → Netlist Viewers → RTL Viewer.

V7. You can see the RTL (Register Transfer Level) view of your Verilog Code.

Digital Circuit Design Lab

Page 30 of 109

Simulation:

S1. Go to File→ New to create a Vector Waveform File (VWF) which is required for simulating

inputs and outputs. Select University Program VWF under Verification/Debugging Files and

click OK.

S2. The following window will open up.

Digital Circuit Design Lab

Page 31 of 109

S3. Click on Edit → Insert → Insert Node or Bus..

S4. In the Insert Node or Bus window, click Node Finder.

S5. In the Node Finder window, Click List. Make sure Pins:all is selected under Filter.

S6. Now the window will look like the following. Click on the ‘>>’ button.

Digital Circuit Design Lab

Page 32 of 109

S7. Now, it should appear like the following. Click OK.

S8. In the following window, click OK.

Digital Circuit Design Lab

Page 33 of 109

S9. The vector waveform file will now look like the following:

Now, you can clearly see the inputs and outputs.

S10. Click on Edit → Set End Time… and set the time to 80ns.

S11. Select an input and from tool bar, click on the Overwrite Clock icon.

Digital Circuit Design Lab

Page 34 of 109

S12. In the Clock window, set parameters of the clock. Only change the Period and keep

everything else the same as before. Double clock period as you move from one input (LSB) to

another as this will enable you to simulate the circuit for all possible input signal conditions.

S13. Now, after setting all the input clocks, Vector Waveform File will look like the following:

S14. Save the Vector Waveform File.

S15. Click on Run Functional Simulation icon.

S16. Now observe the simulated waveforms..

Digital Circuit Design Lab

Page 35 of 109

FPGA Programming:

F1. To load the program on to the FPGA board, go to Assignments → Pins.

F2. We will be using toggle switches for inputs and Red LED for output. Assign the pins as

follows. Click on Location and type in the pin name.

INPUT OUTPUT

Signal Switch No. Pin No. Signal LED No. Pin No.

A SW2 PIN_P25

f LEDR0 PIN_AE23 B SW1 PIN_N26

C SW0 PIN_N25

Digital Circuit Design Lab

Page 36 of 109

F3. Close the window. Note that now you will have to compile the code again. So go to start

compilation.

F4. After successful compilation, go to Tools→Programmer.

F5. Select Hardware Setup. In the Hardware Setup window, select USB-Blaster (USB-0) and

click Close.

Digital Circuit Design Lab

Page 37 of 109

F6. Click Start on the Left-Hand Side toolbar. You should see the progress bar moving and

going to 100% if loading is successful.

Also note that, if an error occurs, it can be found in the message window:

F7. Verify the outputs in FPGA board.

Digital Circuit Design Lab

Page 38 of 109

Hardware Description Language (HDL)

A hardware description language (HDL) is a computer-based language that describes the

hardware of digital systems in a textual form. It resembles an ordinary computer programming

language, such as C, but is specifically oriented to describing hardware structures and the

behavior of logic circuits. One way to view an HDL is to observe that it describes a relationship

between signals that are the inputs to a circuit and the signals that are the outputs of the circuit.

There are two major Hardware Description languages –

• VHDL

• Verilog

We will focus on Verilog HDL for our Lab. In the 1980s rapid advances in integrated circuit

technology lead to efforts to develop standard design practices for digital circuits. Verilog was

produced as a part of that effort. The original version of Verilog was developed by Gateway

Design Automation, which was later acquired by Cadence Design Systems.

There are three distinct ways we can write Verilog Codes.

• Structural

• Data Flow

• Behavioral

In this Lab, we will learn these different ways of writing Verilog Code by implementing the

following function:

f = AC + BC′

B

f

A

C

g

hk (~ C)

Digital Circuit Design Lab

Page 39 of 109

Structural

Basic

/*

 This Verilog Code implements the Sum of Product (SOP) function

 using Structural representation which is also known as Gate level modeling.

*/

module SOPfunc (A, B, C, f);

 input A, B, C;

 output f;

 wire g, h, k; // Optional Declaration

 and (g, A, C);

 not (k, C);

 and (h, B, k);

 or (f, g, h);

endmodule

Simplified

module SOPfunc (input A, B, C, output f);

 and (g, A, C);

 and (h, B, ~C);

 or (f, g, h);

endmodule

Digital Circuit Design Lab

Page 40 of 109

Data Flow

Basic

module SOPfunc (A, B, C, f);

 input A, B, C;

 output f;

 wire g, h, k;

 assign g = A & C;

 assign k = ~C;

 assign h = B & k;

 assign f = g | h;

endmodule

Simplified

module SOPfunc (A, B, C, f);

 input A, B, C;

 output f;

 wire g, h;

 assign g = A & C;

 assign h = B & ~C;

 assign f = g | h;

endmodule

Further Simplified

module SOPfunc (A, B, C, f);

 input A, B, C;

 output f;

 assign f = (A & C) | (B & ~C);

endmodule

Digital Circuit Design Lab

Page 41 of 109

Behavioral

Basic

module SOPfunc (A, B, C, f);

 input A, B, C;

 output reg f;

 reg g, h;

 always @ (A, B, C)

 begin

 g = A & C;

 h = B & ~C;

 f = g | h;

 end

endmodule

Simplified

module SOPfunc (A, B, C, f);

 input A, B, C;

 output reg f;

 always @ (A, B, C)

 f = (A & C) | (B & ~C);

endmodule

Digital Circuit Design Lab

Page 42 of 109

Using Case (Basic)

module SOPfunc (A, B, C, f);
 input A, B, C;
 output reg f;

 always @ (A, B, C)
 case ({A, B, C})
 3'b000: f = 0;
 3'b001: f = 0;
 3'b010: f = 1;
 3'b011: f = 0;
 3'b100: f = 0;
 3'b101: f = 1;
 3'b110: f = 1;
 3'b111: f = 1;
 endcase

endmodule

Using Case (Simplified)

module SOPfunc (A, B, C, f);
 input A, B, C;
 output reg f;

 always @ (A, B, C)
 case ({A, B, C})
 0: f = 0;
 1: f = 0;
 2: f = 1;
 3: f = 0;
 4: f = 0;
 5: f = 1;
 6: f = 1;
 7: f = 1;
 endcase

endmodule

Digital Circuit Design Lab

Page 43 of 109

Experiment: 3

Experiment name: Introduction to Adder Circuit.

Introduction:

Adders and sub tractors are the basic operational units of simple digital arithmetic operations. In

this experiment, the students will construct the basic adder and sub tractor circuit with common

logic gates and test their operability. Then in the last job, they will cascade adder ICs to get

higher bit adders.

Binary Adder

Among the basic functions encountered are the various arithmetic operations. The most basic

arithmetic operation is the addition of two binary digits. This simple addition consists of four

possible elementary operations, namely, 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, and 1 + 1 = 10. The first

three operations produce a sum whose length is one digit, but when both augend and addend bits

are equal to 1, the binary sum consists of two digits. The higher significant bit of this result is

called a carry. When the augend and addend numbers contain more significant digits, the carry

obtained from the addition of two bits is added to the next higher-order pair of significant bits. A

combinational circuit that performs the addition of two bits is called a half-adder. One that

performs the addition of three bits (two significant bits and a previous carry) is full-adder.

Half Adder

From the basic understanding of a half-adder, we find that the circuit needs two binary inputs

and two binary outputs. The input variables designate the augend and addend bits; the output

variables produce the sum and carry. It is necessary to specify two output variables because the

result may consist of two binary digits. We arbitrarily assign symbols x and y to the two inputs

and S (for sum) and C (for carry) to the outputs.

So, we have established the number and names of the input and output variables, we are ready to

formulate a truth table to identify exactly the function of the half-adder. This truth table is –

x y C S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

The carry output is 0 unless both inputs are 1. The S output represents the least significant bit of

the sum.

The simplified Boolean functions for the two outputs can be obtained directly from the truth

table. The simplified sum of products expressions are –

xyC

yxyxyxS

=

=+=

Digital Circuit Design Lab

Page 44 of 109

The logic diagram for this implementation is shown below –

Full Adder

A full-adder is a combinational circuit that forms the arithmetic sum of three input bits. It

consists of three inputs and two outputs. Two of the input variables, denoted by x and y,

represent the two significant bits to be added. The third input, z, represents the carry from the

previous lower significant position. Two outputs are necessary because the arithmetic sum of

three binary digits ranges in value from 0 to 3, and binary 2 or 3 needs two digits. The two

outputs are designated by the symbols S for sum and C for carry. The binary variable S gives the

value of the least significant bit of the sum. The binary variable Cr gives the output carry. The

truth table of the full-adder is

x y z C S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

The eight rows under the input variables designate all possible combinations of 1's and 0's that

these variables may have. The 1's and 0's for the output variables are determined from the

arithmetic sum of the input bits. When all input bits are 0's, the output is 0. The S output is equal

to 1 when only one input is equal to 1 or when all three inputs are equal to 1. The C output has a

carry of 1 if two or three inputs are equal to 1. Physically, the binary signals of the input wires

are considered binary digits added arithmetically to form a two-digit sum at the output wires. On

the other hand, the same binary values are considered variables of Boolean functions when

expressed in the truth table or when the circuit is implemented with logic gates. It is important to

realize that two different interpretations are given to the values of the bits encountered in this

circuit. The input-output logical relationship of the full-adder circuit may be expressed in two

Digital Circuit Design Lab

Page 45 of 109

Boolean functions, one for each output variable. This implementation uses the following Boolean

expressions:

zyxyxzyxzxyyxzyxyxzxyzzyxzyxzyxS =+=+++=+++=)()()()(

() () ()C x yz xy z xyz xyz x y xy z xy z z x y z xy     = + + + = + + + =  +

The logic diagram for the full-adder implemented in sum of products is shown here.

Equipment:

1. Trainer Board

2. IC 7408,7432,7486

Procedure:

1. Fill up the truth table for a half adder.

2. Verify the Boolean function for a half adder.

3. Construct the logic diagram from the Boolean functions.

4. Select the ICs from the equipment list.

5. Implement the output logic.

6. Fill up the truth table for a full adder.

7. Verify the Boolean function for a full adder.

8. Construct the logic diagram from the Boolean functions.

9. Select the ICs from the equipment list.

10. Implement the output logic.

Digital Circuit Design Lab

Page 46 of 109

Procedure for FPGA

1. Create a new project and create a new block diagram/schematic/verilog file.

2. Compile and simulate the schematic. If everything is ok, assign pins as follows –

Half Adder:

INPUT OUTPUT

Signal Switch No. Pin No. Signal LED No. Pin No.

x SW1 PIN_N26 C LEDR1 PIN_AF23

y SW0 PIN_N25 S LEDR0 PIN_AE23

Full Adder:

INPUT OUTPUT

Signal Switch No. Pin No. Signal LED No. Pin No.

x SW2 PIN_P25 C LEDR1 PIN_AF23

y SW1 PIN_N26 S LEDR0 PIN_AE23

z SW0 PIN_N25

Report

1. Find out the expressions of Sum (S) & Carry (C) bit of the Full-Adder using K-Map.

2. Design a Full-Adder using two Half-Adder block and basic gates.

3. Design a 4-bit Adder using four (4) Full-Adder blocks.

Digital Circuit Design Lab

Page 47 of 109

Half Adder (Structural)

module HalfAdder (x, y, S, C);

input x, y;

output S, C;

xor (S, x, y);

and (C, x, y);

endmodule

Half Adder (Data Flow)

module HalfAdder (x, y, S, C);

input x, y;

output S, C;

assign S = x ^ y;

assign C = x & y;

endmodule

Half Adder (Behavioral)

module HalfAdder (x, y, S, C);

input x, y;

output reg S, C;

always @ (x, y)

{C, S} = x + y;

endmodule

Digital Circuit Design Lab

Page 48 of 109

Full Adder (Structural)

module FullAdder (x, y, z, S, C);

 input x, y, z;

 output S, C;

 wire g, h, k;

 // Sum (S)

 xor (g, x, y);

 xor (S, g, z);

 // Carry (C)

 and (h, x, y);

and (k, g, z);

 or (C, h, k);

endmodule

Full Adder (Data Flow)

module FullAdder (x, y, z, S, C);

 input x, y, z;

 output S, C;

 assign S = x ^ y ^ z;

 assign C = ((x ^ y) & z) | (x & y);

endmodule

Full Adder (Behavioral)

module FullAdder (x, y, z, S, C);

 input x, y, z;

 output reg S, C;

 always @ (x, y, z)

 {C, S} = x + y + z;

endmodule

Digital Circuit Design Lab

Page 49 of 109

Full Adder from Half Adder

// Full Adder (Top Level Hierarchy)

module FA (x, y, z, S, C);

 input x, y, z;

 output S, C;

 wire g, h, k;

 HA HA1 (x, y, g, h);

 HA HA2 (g, z, S, k);

 or (C, h, k);

endmodule

// Half Adder

module HA (x, y, S, C);

 input x, y;

 output reg S, C;

 always @ (x, y)

 {C, S} = x + y;

endmodule

Digital Circuit Design Lab

Page 50 of 109

Experiment: 4

Experiment name: Introduction to BCD Adder

Introduction:
Before discussing BCD Adder circuitry first, we can review the basic concepts of BCD no

system and BCD addition technique.

BCD

Binary coded decimal (BCD) is a weighted code that is commonly used in many computers and

calculators to represent decimal numbers. This code takes each decimal digit and represents it by

a four-bit code ranging from 0000 to 1001.

The table illustrates the difference between straight binary and BCD. BCD represents each

decimal digit with a 4-bit code. Notice that the codes 1010 through 1111 are not used in BCD.

BCD Addition

The addition of decimal numbers that are in BCD form can be best understood by considering

the two cases that can occur when two decimal digits are added.

Sum Equals 9 or Less

Consider adding 45 and 33 using BCD to represent each digit:

In the examples above, none of the sums of the pairs of decimal digits exceeded 9; therefore, no

decimal carries were produced. For these cases, the BCD addition process is straightforward and

is actually the same as binary addition.

Digital Circuit Design Lab

Page 51 of 109

Sum Greater than 9

Consider the addition of 6 and 7 in BCD:

The sum 1101 does not exist in the BCD code; it is one of the six forbidden or invalid four-bit

code groups. This has occurred because the sum of the two digits exceeds 9. Whenever this

occurs, the sum must be corrected by the addition of six (0110) to take into account the skipping

of the six invalid code groups:

As shown above, 0110 is added to the invalid sum and produces the correct BCD result. Note

that with the addition of 0110, a carry is produced in the second decimal position. This addition

must be performed whenever the sum of the two decimal digits is greater than 9.

Consider the addition of 59 and 38 in BCD:

Here, the addition of the least significant digits (LSDs) produces a sum of 17 = 10001. This

generates a carry into the next digit position to be added to the codes for 5 and 3. Since 17 7 9, a

correction factor of 6 must be added to the LSD sum. Addition of this correction does not

generate a carry; the carry was already generated in the original addition.

To summarize the BCD addition procedure:

1. Using ordinary binary addition, add the BCD code groups for each digit position.

2. For those positions where the sum is 9 or less, no correction is needed. The sum is in

proper BCD form.

3. When the sum of two digits is greater than 9, a correction of 0110 should be added to that

sum to get the proper BCD result. This case always produces a carry into the next digit

position, either from the original addition (step 1) or from the correction addition.

BCD ADDER

Consider the arithmetic addition of two decimal digits in BCD, together with a possible carry

from a previous stage. Since each input digit does not exceed 9, the output sum cannot be greater

than 9 + 9 + 1 = 19, the 1 in the sum being an input carry. Suppose we apply two BCD digits to a

Digital Circuit Design Lab

Page 52 of 109

4-bit binary adder. The adder will form the sum in binary and produce a result that may range

from 0 to 19. These binary numbers are listed in Table and are labeled by symbols K, Z4, Z3, Z2,

and Z1. K is the carry, and the subscripts under the letter Z represent the weights 4, 3, 2, and 1

that can be assigned to the four bits in the BCD code. The first column in the table lists the

binary sums as they appear in the outputs of a 4-bit binary adder. The output sum of two decimal

digits must be represented in BCD and should appear in the form listed in the second column of

the table. The problem is to find a simple rule by which the binary number, in the first column

can be converted to the correct BCD-digit representation of the number in the second column. In

examining the contents of the table, it is apparent that when the binary sum is equal to or less

than 1001, the corresponding BCD number is identical, and therefore no conversion is needed.

When the binary sum is greater than 1001, we obtain an invalid BCD representation. The

addition of binary 6 (0110) to the binary sum converts it to the correct BCD representation and

also produces an output carry as required. The logic circuit that detects the necessary correction

can be derived from the table entries. It is obvious that a correction is needed when the binary

sum has an output carry K = 1. The other six combinations from 1010 to 1111 that need a

correction have a 1 in position Z4. To distinguish them from binary 1000 and 1001, which also

have a 1 in position Z4 we specify further that, either Z3 or Z2 must have a 1 along with Z4. The

condition for a correction and an output carry can be expressed by the Boolean function

4 3 4 2C K Z Z Z Z= + +

When C = 1, it is necessary to add 0110 to the binary sum and provide an output carry for the

next stage.

A BCD adder is a circuit that adds two BCD digits in parallel and produces a sum digit also in

BCD. A BCD adder must include the correction logic in its internal construction. To add 0110 to

the binary sum, we use a second 4-bit binary adder, as shown in Figure. The two decimal digits,

together with the input carry, are first added in the top 4-bit binary adder to produce the binary

sum. When the output carry is equal to zero, nothing is added to the binary sum. When it is equal

to one, binary 0110 is added to the binary sum through the bottom 4-bit binary adder. The output

carry generated from the bottom binary adder can be ignored, since it supplies information

already available at the output-carry terminal. The BCD adder can be constructed with three IC

packages.

Caution:
1. Remember to properly identify the pin numbers so that no accidents occur.

2. Properly bias the ICs with appropriate voltages to appropriate pins.

Procedure:
1. Draw the logic diagram to implement the task.

2. Select the required ICs.

3. Verify the following truth table for 20output values (0-20).

Digital Circuit Design Lab

Page 53 of 109

Figure: BCD Adder

Digital Circuit Design Lab

Page 54 of 109

 Binary Sum BCD Sum

Decimal K Z4 Z3 Z2 Z1 C S4 S3 S2 S1

0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 1

2 0 0 0 1 0 0 0 0 1 0

3 0 0 0 1 1 0 0 0 1 1

4 0 0 1 0 0 0 0 1 0 0

5 0 0 1 0 1 0 0 1 0 1

6 0 0 1 1 0 0 0 1 1 0

7 0 0 1 1 1 0 0 1 1 1

8 0 1 0 0 0 0 1 0 0 0

9 0 1 0 0 1 0 1 0 0 1

10 0 1 0 1 0 1 0 0 0 0

11 0 1 0 1 1 1 0 0 0 1

12 0 1 1 0 0 1 0 0 1 0

13 0 1 1 0 1 1 0 0 1 1

14 0 1 1 1 0 1 0 1 0 0

15 0 1 1 1 1 1 0 1 0 1

16 1 0 0 0 0 1 0 1 1 0

17 1 0 0 0 1 1 0 1 1 1

18 1 0 0 1 0 1 1 0 0 0

19 1 0 0 1 1 1 1 0 0 1

Procedure for FPGA

1. Create a new project and create a new block diagram/schematic file.

2. Compile and simulate the schematic. If everything is ok, assign pins as follows:

INPUT OUTPUT

Signal Switch No. Pin No. Signal LED No. Pin No.

A1 SW4 PIN_AF14 C LEDR4 PIN_AD22

A2 SW5 PIN_AD13 S1 LEDR0 PIN_AE23

A3 SW6 PIN_AC13 S2 LEDR1 PIN_AF23

A4 SW7 PIN_C13 S3 LEDR2 PIN_AB21

B1 SW0 PIN_N25 S4 LEDR3 PIN_AC22

B2 SW1 PIN_N26

 B3 SW2 PIN_P25

B4 SW3 PIN_AE14

Digital Circuit Design Lab

Page 55 of 109

3. Test the functionality of the designed circuit using switches and LEDs on the FPGA board

for the following table –

A

(Decimal)

A (Binary)
B

(Decimal)

B (Binary) BCD

SUM

(Decimal)

BCD SUM (Binary)

A4 A3 A2 A1 B4 B3 B2 B1 C S4 S3 S2 S1

5 0 1 0 1 0 0 0 0 0 0 5

7 0 1 1 1 4 0 1 0 0 1 1

2 0 0 1 0 6 0 1 1 0 0 8

9 1 0 0 1 8 1 0 0 0 1 7

1 0 0 0 1 3 0 0 1 1 0 4

Digital Circuit Design Lab

Page 56 of 109

BCD Adder

module BcdAdd (A, B, S, C);

 input [4:1] A, B;

 output reg [4:1] S;

 output reg C;

 reg [5:1] Z;

 always @ (A, B)

 begin

 Z = A + B;

 if (Z > 9)

 {C, S} = Z + 6;

 else

 {C, S} = Z;

 end

 endmodule

Digital Circuit Design Lab

Page 57 of 109

Experiment: 5

Experiment name: Introduction to Multiplexers and Demultiplexer.

Introduction
Multiplexers are the most important attributions of digital circuitry in communication hardware.

These digital switches enable us to achieve the communication network we have today. In this

experiment the students will have to construct MUX (as they call multiplexers) with simple logic

gates and they will implement general logic using 8:1 MUX as the basic construction unit.

Multiplexer
A modern home stereo system may have a switch that selects music from one of four sources: a

cassette tape, a compact disc (CD), a radio tuner, or auxiliary input such as audio from a VCR or

DVD. The switch selects one of the electronic signals from one of these four sources and sends it

to the power amplifier and speakers. In simple terms, this is what a multiplexer (MUX) does: it

selects one of several input signals and passes it on to the output.

A digital multiplexer or data selector is a logic circuit that accepts several digital data inputs and

selects one of them at any given time to pass on to the output. The routing of the desired data

input to the output is controlled by SELECT inputs (often referred to as ADDRESS inputs).

Normally, there are 2n input lines and n selection lines whose bit combinations determine which

input is selected.

A 4 to l line multiplexer is shown in Figure. Each of the four input lines, I0 to I3 is applied to one

input of an AND gate. Selection lines S1 and S0 are decoded to select a particular AND gate. The

function table, Figure lists the input-to-output path for each possible bit combination of the

selection lines. To demonstrate the circuit operation, consider the case when S1S0 = 10. The

AND gate associated with input I2 has two of its inputs equal to 1 and the third input connected

to I2. The other three AND gates have at least one input equal to 0, which makes their outputs

equal to 0. The OR gate output is now equal to the value of I2 thus providing a path from the

selected input to the output.

Demultiplexer
A Demultiplexer does the opposite function of multiplexers. A demultiplexer is a circuit that

receives information on a single line and transmits this information on one of 2n possible output

lines. The selection of a specific output line is controlled by the bit values of n selection lines.

The output channel can be selected depending on the combination of selection bits.

Caution:
1. Remember to properly identify the pin numbers so that no accidents occur.

2. Properly bias the ICs with appropriate voltages to appropriate pins.

Equipment:
1. Trainer Board

2. IC 74151, 7432, 7408, 7404

3. Microprocessor Data handbook.

Digital Circuit Design Lab

Page 58 of 109

Job 1:

Implementation of a four to one way Multiplexer (4:1 MUX) with basic gates.

S0

7411

3
6 4

5

7411

9
8 10

11

7404

3

4

I1

7411

1
12 2

13

I3 S1 I2

7432

1

2
3

7411#2

1
12 2

13

7432

4

5
6

1

2

7432

9

10
8

I0

Digital Circuit Design Lab

Page 59 of 109

Procedure:

1. Write the truth table for four to one way MUX.

1S 0S Y

2. Write the Boolean function for the output logic.

3. Draw the logic diagram to implement the Boolean function.

4. Select ICs from the equipment list.

5. Observe and note the output logic for all combinations of inputs.

Digital Circuit Design Lab

Page 60 of 109

Job 2:

Implement the following function using an 8:1 MUX.

 () (), , , 0, 1, 3, 5, 8, 9, 14, 15F A B C D m=

If we have a Boolean function of n + 1 variables, we take n of these variables and connect them

to the selection lines of a multiplexer. The remaining single variable of the function is used for

the inputs of the multiplexer. If A is this single variable, the inputs of the multiplexer are chosen

to be either A or A' or 1 or 0. By judicious use of these four values for the inputs and by

connecting the other variables to the selection lines, one can implement any Boolean function

with a multiplexer. In this way, it is possible to generate any function of n + 1 variables with a 2n

to1 multiplexer.

Digital Circuit Design Lab

Page 61 of 109

Procedure:

1. Write the truth table for the above function.

A B C D Y

0 0 0 0 1

0 0 0 1 1

0 0 1 0 0

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 0

0 1 1 1 0

1 0 0 0 1

1 0 0 1 1

1 0 1 0 0

1 0 1 1 0

1 1 0 0 0

1 1 0 1 0

1 1 1 0 1

1 1 1 1 1

Let, B, C, D of the 4 variables (A, B, C, D) connected to the selection lines of a multiplexer and

remaining single variable A of the function is used for the inputs of the multiplexer.

0I 1I 2I 3I 4I 5I 6I 7I

A 1 1 1 1

A 1 1 1 1

 1 1 0 A 0 A A A

2. Draw the logic diagram to implement the Boolean function.

3. Select ICs from the equipment list.

4. Observe and note the output logic for all combinations of inputs.

Digital Circuit Design Lab

Page 62 of 109

Job 3:

Implementation of a one to fore way Demultiplexer (4:1 DEMUX) with basic gates.

Procedure:

1. Write the truth table for one to four way DEMUX.

1S 0S 0I 1I 2I 3I

2. Write the Boolean function for the output logic.

3. Draw the logic diagram to implement the Boolean function.

4. Select ICs from the equipment list.

5. Observe and note the output logic for all combinations of inputs.

S0

7411

3
6 4

5

7411

9
8 10

11

7404

3

4

I0

7411

1
12 2

13

Y

I2

S1

7411#2

1
12 2

13

I1

I3

1

2

Digital Circuit Design Lab

Page 63 of 109

Procedure for FPGA:

Design 4:1 MUX

1. Create a new project and create a new block diagram/schematic file.

2. Compile and simulate the schematic. If everything is ok, assign pins as follows:

INPUT OUTPUT

Signal Switch Pin No. Signal LED Pin No.

I0 SW2 PIN_P25 Y LEDR0 PIN_AE23

I1 SW3 PIN_AE14

I2 SW4 PIN_AF14

I3 SW5 PIN_AD13

S0 SW0 PIN_N25

S1 SW1 PIN_N26

3. After assigning pins, the final schematic should look like the following one:

4. Test the functionality of the designed circuit using switches and LEDs on the FPGA board.

Digital Circuit Design Lab

Page 64 of 109

Implement the following function using an 8:1 MUX

() (), , , 0, 1, 3, 5, 8, 9, 14, 15F A B C D m=

1. Create a new project and create a new block diagram/schematic file.

2. Compile and simulate the schematic. If everything is ok, assign pins as follows:

INPUT OUTPUT

Signal Switch Pin No. Signal LED Pin No.

A SW3 PIN_AE14 Y LEDR0 PIN_AE23

B SW2 PIN_P25

C SW1 PIN_N26

D SW0 PIN_N25

3. After assigning pins, the final schematic should look like the following one:

4. Test the functionality of the designed circuit using switches and LEDs on the FPGA board.

Digital Circuit Design Lab

Page 65 of 109

DEMUX

1. Create a new project and create a new block diagram/schematic file.

2. Compile and simulate the schematic. If everything is ok, assign pins as follows:

INPUT OUTPUT

Signal Switch No. Pin No. Signal LED No. Pin No.

S0 SW0 PIN_N25 I0 LEDR0 PIN_AE23

S1 SW1 PIN_N26 I1 LEDR1 PIN_AF23

Y SW2 PIN_P25 I2 LEDR2 PIN_AB21

 I3 LEDR3 PIN_AC22

3. After assigning pins, the final schematic should look like the following one:

4. Test the functionality of the designed circuit using switches and LEDs on the FPGA board.

Report:

1. Implement a Full Adder using an 8:1 MUX.

2. Repeat 1 using two 4:1 MUX and basic gates.

3. Implement a 4:1 MUX using three 2:1 MUX.

4. Implement an 8:1 MUX using two 4:1 MUX & a 2:1 MUX.

Digital Circuit Design Lab

Page 66 of 109

MUX (2 to 1)

Conditional (Ternary) Operator

module mux2to1 (I0, I1, S, Y);

 input I0, I1, S;

 output reg Y;

 always @ (I0, I1, S)

 Y = S ? I1:I0;

endmodule

If-Else

module mux2to1 (I0, I1, S, Y);

input I0, I1, S;

output reg Y;

always @ (I0, I1, S)

if (S == 0)

Y = I0;

else

Y = I1;

endmodule

Case

module mux2to1 (I0, I1, S, Y);

 input I0, I1, S;

 output reg Y;

 always @ (I0, I1, S)

 case (S)

 0: Y = I0;

 1: Y = I1;

 endcase

endmodule

Digital Circuit Design Lab

Page 67 of 109

MUX (4 to 1)

If-Else If-Else

module mux4to1 (I, S, Y);

 input [3:0] I;

 input [1:0] S;

 output reg Y;

 always @ (I, S)

 if (S == 0)

 Y = I [0];

 else if (S == 1)

 Y = I [1];

 else if (S == 2)

 Y = I [2];

 else

 Y = I [3];

endmodule

Case

module mux4to1 (I, S, Y);

 input [3:0] I;

 input [1:0] S;

 output reg Y;

 always @ (I, S)

 case (S)

 0: Y = I [0]; // 2'b00: Y = I[0]

 1: Y = I [1]; // 2'b01: Y = I[1]

 2: Y = I [2]; // 2'b10: Y = I[2]

 3: Y = I [3]; // 2'b11: Y = I[3]

 endcase

 endmodule

Digital Circuit Design Lab

Page 68 of 109

4 to 1 MUX from 2 to 1 MUX

// 4 to 1 Mux (Top Level Hierarchy)

module mux4to1 (I, S, Y);

 input [3:0] I;

 input [1:0] S;

 output Y;

 wire Y1, Y2;

 mux2to1 M1(I [0], I [1], S [0], Y1);

 mux2to1 M2(I [2], I [3], S [0], Y2);

 mux2to1 M3(Y1, Y2, S [1], Y);

endmodule

// 2 to 1 Mux

module mux2to1 (I0, I1, S, Y);

 input I0, I1, S;

 output reg Y;

 always @ (I0, I1, S)

 Y = S ? I1 : I0;

endmodule

Digital Circuit Design Lab

Page 69 of 109

DEMUX (1 to 4)

module demux1to4 (Y, S, I);

 input Y;

 input [1:0] S;

 output reg [3:0] I;

 always @ (Y, S)

 begin

 I = 0; // I = 4'b000

 case(S)

 0: I [0] = Y; // 2'b00: I[0] = Y

 1: I [1] = Y; // 2'b01: I[1] = Y

 2: I [2] = Y; // 2'b10: I[2] = Y

 3: I [3] = Y; // 2'b11: I[3] = Y

 endcase

 end

endmodule

Digital Circuit Design Lab

Page 70 of 109

Experiment: 6

Experiment name: Introduction to Encoders and Decoders.

Introduction:

Priority Encoder
A priority encoder is an encoder circuit that includes priority function. Priority Encoder

includes the necessary logic to ensure that when two or more inputs are activated, the output

code will correspond to the highest-numbered input. The truth table for a 4 to 2 priority encoder

is given in Table. The X's are don't-care conditions that designate the fact that the binary value

may be equal either to 0 or 1. Input D3 has the highest priority; so regardless of the values of the

other inputs, when this input is 1, the output for xy is 11 (binary 3). D2 has the next priority level.

The output is 10 if D2 = 1 provided that D3 = 0, regardless of the values of the other two lower-

priority inputs. The output for D1 is generated only if higher-priority inputs are 0, and so on

down the priority level. A valid-output indicator, designated by V, is set to 1 only when one or

more of the inputs are equal to 1. If all inputs are 0, V is equal to 0, and the other two outputs of

the circuit are not used.

Truth table of a Priority Encoder

Inputs Outputs

D3 D2 D1 D0 x y V

0 0 0 0 X X 0

0 0 0 1 0 0 1

0 0 1 X 0 1 1

0 1 X X 1 0 1

1 X X X 1 1 1

Seven Segment Decoder

The 7-segment display, also written as “seven segment display”, consists of seven LEDs

arranged in a rectangular fashion. Each of the seven LEDs is called a segment because when

illuminated the segment forms part of a numerical digit (both Decimal and Hex) to be displayed.

The Common Cathode (CC) – In the common cathode display, all the cathode connections of the

LED segments are joined together to logic “0” or ground. The individual segments are

illuminated by application of a “HIGH”, or logic “1” signal via a current limiting resistor to

forward bias the individual Anode terminals (a-g).

Common Cathode 7-segment Display

Digital Circuit Design Lab

Page 71 of 109

2. The Common Anode (CA) – In the common anode display, all the anode connections of the

LED segments are joined together to logic “1”. The individual segments are illuminated by

applying a ground, logic “0” or “LOW” signal via a suitable current limiting resistor to the

Cathode of the particular segment (a-g).

Common Anode 7-segment Display

7-Segment Display Segments for all Numbers.

Then for a 7-segment display, we can produce a truth table giving the individual segments

Caution:

1. Remember to properly identify the pin numbers so that no accidents occur.

2. Properly bias the ICs with appropriate voltages to appropriate pins.

Equipment:

1. Trainer Board

2. IC 7432, 7408, 7404

3. Microprocessor Data handbook.

Digital Circuit Design Lab

Page 72 of 109

Priority encoder:

Implement a 24 priority encoder with basic gates.

Procedure:

1. Write the truth table for 24 priority encoder.

3D 2D
1D 0D X Y V

2. Write the Boolean function for the output logic.

3. Simplify the Boolean function using K-map.

4. Draw the logic diagram to implement the simplified Boolean function.

7432

12
13

11

Y=D3+D1.D2’ 7408

1
2

3

D1

7432

9
10

8

D2 D3 D0

X=D2+D3

7432

1
2

3

7432

4
5

6

V=D0+D1+D2+D3

7404
1 2

Digital Circuit Design Lab

Page 73 of 109

Procedure for FPGA:

Priority Encoder

1. Create a new project and create a new block diagram/schematic file.

2. Compile and simulate the schematic. If everything is ok, assign pins as follows:

INPUT OUTPUT

Signal Switch Pin No. Signal LED Pin No.

D0 SW0 PIN_N25 V LEDR0 PIN_AE23

D1 SW1 PIN_N26 Y LEDR1 PIN_AF23

D2 SW2 PIN_P25 X LEDR2 PIN_AB21

D3 SW3 PIN_AE14

3. After assigning pins, the final schematic should look like the following one:

4. Test the functionality of the designed circuit using switches and LEDs on the FPGA board

Seven Segment Display

The DE2 Board has eight 7-segment displays. These displays are arranged into two pairs and a

group of four, with the intent of displaying numbers of various sizes the seven segments are

connected to pins on the Cyclone II FPGA. Applying a low logic level to a segment causes it to

light up, and applying a high logic level turns it off. Each segment in a display is identified by an

index from 0 to 6, Note that the dot in each display is unconnected and cannot be used.

Digital Circuit Design Lab

Page 74 of 109

Procedure for FPGA:

BCD Decoder

1. Create a new project and create a new block diagram/schematic file. After completing the

schematic, it should look like the following:

2. Compile and simulate the schematic. If everything is ok, assign pins as follows:

INPUT OUTPUT

Signal Switch No. Pin No. Signal LED No. Pin No.

A0 SW0 PIN_N25 D0 HEX0[0] PIN_AF10

A1 SW1 PIN_N26 D1 HEX0[1] PIN_AB12

A2 SW2 PIN_P25 D2 HEX0[2] PIN_AC12

A3 SW3 PIN_AE14 D3 HEX0[3] PIN_AD11

 D4 HEX0[4] PIN_AE11

 D5 HEX0[5] PIN_V14

 D6 HEX0[6] PIN_V13

3. After assigning pins, the final schematic should look like the following one:

4. Test the functionality of the designed circuit using switches and LEDs on the FPGA board.

Digital Circuit Design Lab

Page 75 of 109

Priority Encoder

module priority (D, x, y, V);

 input [3:0] D; // Input D3 > D2 > D1 > D0

 output reg x, y; // Output: x --> MSB, y --> LSB

 output V; // Validity Indicator (NOT reg)

 assign V = D[3] | D[2] | D[1] | D[0]; // OR operation

 always @ (D)

 casex (D)

 4'b1xxx: {x, y} = 2'b11; // {x, y} = 3

 4'b01xx: {x, y} = 2'b10; // {x, y} = 2

 4'b001x: {x, y} = 2'b01; // {x, y} = 1

 4'b0001: {x, y} = 2'b00; // {x, y} = 0

 default: {x, y} = 2'bx; // {x, y} = 2’bxx

 endcase

endmodule

Digital Circuit Design Lab

Page 76 of 109

BCD Decoder with 7-segment Display

module seg7(A, D);

input [3:0] A;

output reg [0:6] D; // abcdefg

always @ (A)

 case (A)

 0: D = 7'b0000001; // 7'b 000_0001 (for better readability)

 1: D = 7'b1001111;

 2: D = 7'b0010010;

 3: D = 7'b0000110;

 4: D = 7'b1001100;

 5: D = 7'b0100100;

 6: D = 7'b1100000;

 7: D = 7'b0001111;

 8: D = 7'b0000000;

 9: D = 7'b0001100;

 default: D = 7'bx;

 endcase

endmodule

Digital Circuit Design Lab

Page 77 of 109

Experiment: 7

Experiment name: Introduction to Sequential Logic Circuits.

Caution:
1. Remember to properly identify the pin numbers so that no accidents occur.

2. Properly bias the ICs with appropriate voltages to appropriate pins.

Equipment:
1. Trainer Board

2. IC 7400, 7402, 7432, 7408, 7404

3. Microprocessor Data handbook

Nor Gate Latch

Two cross-coupled NOR gates can be used as a NOR gate latch. The arrangement is similar to

the NAND latch except that theQ and Qoutputs have reversed positions.

The analysis of the operation of the NOR latch can be performed in the same manner as for the

NAND latch. The results are given in the function table and are summarized as follows:

1. SET = RESET = 0. This is the normal resting state for the NOR latch, and it has no effect

on the output state. Q and Qwill remain in whatever state they were in prior to the

occurrence of this input condition.

2. SET = 1, RESET = 0. This will always set Q = 1, where it will remain even after SET

returns to 0.

3. RESET = 1. SET = 0, this will always clear Q = 0, where it will remain even after RESET

returns to 0.

4. SET = 1, RESET = 1, this condition tries to set and reset the latch at the same time, and it

produces 0==QQ . If the inputs are returned to 0 simultaneously, the resulting output

state is unpredictable. This input condition should not be used.

The NOR gate latch operates exactly like the NAND latch except that the SET and RESET

inputs are active-HIGH rather than active-LOW, and the normal resting state is Q will be set

HIGH by a HIGH pulse on the SET input, and it will be cleared LOW by a HIGH pulse on the

RESET input.

Digital Circuit Design Lab

Page 78 of 109

Timing Diagram

Logic Diagram

Procedure:
1. Draw the logic diagram to implement SR Latch.

2. Fill up the table with different combinations of inputs.

S R Q Q

1 0

0 0

0 1

0 0

1 1

3. Observe the combination for which no change and invalid or race conditions arise.

7402

2

3
1 Q

R

S

7402

5

6
4 Q'

Digital Circuit Design Lab

Page 79 of 109

NAND Gate Latch

The most basic FF circuit can be constructed from either two NAND gates or two NOR gates.

The NAND gate version, called a NAND gate latch or simply a latch, is shown in following

Figure. The two NAND gates are cross-coupled so that the output of NAND-1 is connected to

one of the inputs of NAND-2, and vice versa. The gate outputs, labeled Q andQ , respectively,

are the latch outputs.

1. SET = RESET = 1. This condition is the normal resting state, and it has no effect on the

output state. The Q and Qoutputs will remain in whatever state they were in prior to this

input condition

2. SET = 0, RESET = 1. This will always set Q = 1, where it will remain even after RESET

returns to 0.

3. SET = 1. RESET = 0, this will always clear Q = 0, where the output will remain even

after RESET returns HIGH. This is called clearing or resetting the latch.

4. SET = 0, RESET = 0, this condition tries to set and reset the latch at the same time, and it

produces 1==QQ . If the inputs are returned to 1 simultaneously, the resulting output

state is unpredictable. This input condition should not be used.

Timing Diagram

Digital Circuit Design Lab

Page 80 of 109

Logic Diagram

Procedure:
1. Draw the logic diagram to implement SR Latch.

2. Fill up the table with different combinations of inputs.

S R Q Q

0 1

1 1

1 0

1 1

0 0

3. Observe the combination for which no change and invalid or race conditions arise.

JK Latch

A JK Latch is a refinement of the RS Latch in that the indeterminate state of the RS type is

defined in the JK type. Inputs J and K behave like inputs S and R to set and clear the Latch,

respectively. The input marked J is for set and the input marked K is for reset. When both inputs

J and K are equal to 1, the Latch switches to its complement state, that is, if Q = 1, it switches to

Q = 0, and vice versa.

A JK Latch constructed with two cross-coupled NOR gates and two AND gates is shown in

Figure. Output Q is ANDed with K and CP inputs so that the Latch is cleared during a clock

pulse only if Q was previously 1. Similarly, output Q' is ANDed with J and CP inputs so that the

flop-flop is set with a clock pulse only when Q' was previously 1. When both J and K are 1, the

input pulse is transmitted through one AND gate only: the one whose input is connected to the

Latch output that is presently equal to 1. Thus, if Q = 1, the output of the upper AND gate

becomes 1 upon application of the clock pulse, and the Latch is cleared. If Q' = 1, the output of

the lower AND gate becomes 1 and the Latch is set. In either case, the output state of the Latch is

complemented. The behavior of the JK Latch is demonstrated in the characteristic table.

It is very important to realize that because of the feedback connection in the JK Latch, a CP

pulse that remains in the 1 state while both J and K are equal to 1 will cause the output to

complement again and repeat complementing until the pulse goes back to 0. To avoid this

Digital Circuit Design Lab

Page 81 of 109

undesirable operation, the clock pulse must have a time duration that is shorter than the

propagation delay time of the Latch. This is a restrictive requirement, since the operation of the

circuit depends on the width of the pulse. For this reason, JK Latchs are never constructed as

shown in Figure. The restriction on the pulse width can be eliminated with a master-slave or

edge-triggered construction, as discussed in the next section. The same reasoning applies to the T

Latch.

Procedure:

1. Draw the logic diagram to implement J-K Latch.

2. Fill up the table with different combinations of inputs.

Q J K ()1+tQ

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

3. Observe the combination for which no change and invalid or race conditions arise.

Digital Circuit Design Lab

Page 82 of 109

D Latch

Design of a D Latch from a J-K Latch.

Procedure:
1. Draw the logic diagram to implement D Latch.

2. Fill up the table with different combinations of inputs.

Q D ()1+tQ

0 0

0 1

1 0

1 1

3. Observe the combination for which no change and invalid or race conditions arise.

Digital Circuit Design Lab

Page 83 of 109

T Latch

Design of a T Latch from a J-K Latch.

Procedure:

1. Draw the logic diagram to implement T Latch.

2. Fill up the table with different combinations of inputs.

Q T ()1+tQ

0 0

0 1

1 0

1 1

3. Observe the output logic.

Digital Circuit Design Lab

Page 84 of 109

Procedure for FPGA:

JK Flip-Flop

1. Create a new project and create a new block diagram/schematic file.

2. Complete the circuit using block for JK Flip-Flop.

Block name: jkff (Library: Primitives → Storage)

3. Compile and simulate the schematic.

4. Assign pins using the following table.

INPUT OUTPUT

Signal Switch No Pin No. Signal LED No. Pin No.

Clk KEY3 PIN_W26 Q LEDR0 PIN_AE23

J SW1 PIN_N26

K SW0 PIN_N25

5. Verify the functionality of your schematic.

Digital Circuit Design Lab

Page 85 of 109

D Flip-Flop

1. Create a new project and create a new block diagram/schematic file.

2. Complete the circuit using block for D Flip-Flop.

Block name: dff (Library: Primitives → Storage)

3. Compile and simulate the schematic.

4. Assign pins using the following table.

INPUT OUTPUT

Signal Switch No Pin No. Signal LED No. Pin No.

Clk KEY3 PIN_W26 Q LEDR0 PIN_AE23

D SW0 PIN_N25

5. Verify the functionality of your schematic.

Digital Circuit Design Lab

Page 86 of 109

T Flip-Flop

1. Create a new project and create a new block diagram/schematic file.

2. Complete the circuit using block for T Flip-Flop.

Block name: tff (Library: Primitives → Storage)

3. Compile and simulate the schematic.

4. Assign pins using the following table.

INPUT OUTPUT

Signal Switch No Pin No. Signal LED No. Pin No.

Clk KEY3 PIN_W26 Q LEDR0 PIN_AE23

T SW0 PIN_N25

5. Verify the functionality of your schematic.

Digital Circuit Design Lab

Page 87 of 109

Experiment: 8

Experiment name: Introduction to Shift-Register & Counter.

Shift Register

A register capable of shifting its binary information either to the right or to the left is called shift

register. The logical configuration of a shift register consists of a chain of flip flops connected in

cascade with the output of one flipflop connected to the input of the next flipflop. All flipflops

receive a common clock pulse which causes the shift from one stage to the next.

A register is a digital circuit with two basic functions: data storage and data movement. The

storage capability of a register makes it an important type of memory device. The storage

capacity of the register is the total number of bits (1s and 0s) of digital data it contains. Each

stage(flipflop) in a shift register represents one bit of storage capacity, therefore the number of

stages in a register determines its storage capacity.

There are many types of shift registers. Here we have described two types –

• Serial Register

➢ Serial in Serial out Shift register

• Parallel Register

➢ Parallel in parallel out shift register

Serial in Serial out Shift register

A serial-in serial-out (SISO) shift register is a digital logic circuit where data bits are entered one

at a time through a single input line and are retrieved one at a time from a single output line,

typically using a series of flip-flops connected in a chain. Each clock pulse shifts the existing

data through the flip-flops, with a new bit entering the first flip-flop and the oldest bit exiting the

last flip-flop. This operation effectively delays the data by one clock cycle for each flip-flop in

the register.

Digital Circuit Design Lab

Page 88 of 109

Procedure for FPGA:

1. Create a new project and create a new block diagram/schematic file. After completing the

schematic, it should look like the following:

2. Compile and simulate the schematic. If everything is ok, assign pins as follows:

INPUT OUTPUT

Signal Switch No. Pin No. Signal LED No. Pin No.

Clk KEY3 PIN_W26 QA LEDR3 PIN_ AC22

In SW0 PIN_N25 QB LEDR2 PIN_ AB21

 QC LEDR1 PIN_ AF23

 QD LEDR0 PIN_ AE23

3. Test the functionality of your designed circuit.

Digital Circuit Design Lab

Page 89 of 109

Parallel in parallel out shift register

For a register with parallel input, the bits are entered simultaneously in to their respective stages

on parallel lines rather than on a bit by bit basis on one line as serial data inputs. Also the data

bits are taken out parallel manner. Once the data are stored, each bit appears on its respective

output line and all bits are available simultaneously rather than on a bit by bit basis as with the

serial output.

Procedure for FPGA:

1. Create a new project and create a new block diagram/schematic file. After completing the

schematic, it should look like the following:

2. Compile and simulate the schematic. If everything is ok, assign pins as follows:

 INPUT OUTPUT

Signal Switch No. Pin No. Signal LED No. Pin No.

D0 SW0 PIN_N25 Q0 LEDR0 PIN_AE23

D1 SW1 PIN_N26 Q1 LEDR1 PIN_AF23

D2 SW2 PIN_P25 Q2 LEDR2 PIN_AB21

D3 SW3 PIN_AE14 Q3 LEDR3 PIN_AC22

Manual_clock KEY3 PIN_W26

Digital Circuit Design Lab

Page 90 of 109

SHIFT REGISTER COUNTER

A shift register counter is basically a shift register with the serial output connected back to the

serial input to produce special sequences. These devices are often classified as counters because

they exhibit a specific sequence of states. Two of most common types of shift register counters,

the Johnson counter and the ring counter, are discussed here.

JOHNSON COUNTER

In a Johnson counter the complement of the last flipflop is connected back to the D input of the

first flipflop. This feedback arrangement produces a characteristic sequence of states which is

shown in the following table for a 4-bit device. 4-bit sequence has a total of eight states or bit

patterns.

Clock Pulse QA QB QC QD

0 0 0 0 0

1 1 0 0 0

2 1 1 0 0

3 1 1 1 0

4 1 1 1 1

5 0 1 1 1

6 0 0 1 1

7 0 0 0 1

Table: 4-bit Johnson counter sequences.

Digital Circuit Design Lab

Page 91 of 109

Procedure for FPGA:

1. Create a new project and create a new block diagram/schematic file. After completing the

schematic, it should look like the following:

2. Compile and simulate the schematic. If everything is ok, assign pins as follows:

INPUT OUTPUT

Signal Switch No. Pin No. Signal LED No. Pin No.

Clk KEY3 PIN_W26 QA LEDR3 PIN_ AC22

 QB LEDR2 PIN_ AB21

 QC LEDR1 PIN_ AF23

 QD LEDR0 PIN_ AE23

3. Test the functionality of the designed circuit using switches and LEDs on the FPGA board.

Digital Circuit Design Lab

Page 92 of 109

RING COUNTER

The ring counter utilizes one flipflop for each state in the sequence. It has the advantage that

decoding gates are not required.

Clock Pulse QA QB QC QD

0 1 0 0 0

1 0 1 0 0

2 0 0 1 0

3 0 0 0 1

Procedure for FPGA:

1. Create a new project and create a new block diagram/schematic file. After completing the

schematic, it should look like the following:

2. Compile and simulate the schematic. If everything is ok, assign pins as follows:

INPUT OUTPUT

Signal Switch No. Pin No. Signal LED No. Pin No.

Clk KEY3 PIN_W26 QA LEDR3 PIN_ AC22

Preset SW0 PIN_N25 QB LEDR2 PIN_ AB21

 QC LEDR1 PIN_ AF23

 QD LEDR0 PIN_ AE23

Digital Circuit Design Lab

Page 93 of 109

Experiment: 9

Experiment name: Introduction to CMOS INVERTER

Objectives: Verify NOT, NAND, NOR gate using CMOS

Equipment: Power supply, digital multimeter, potentiometer, and CMOS.

Background:

CMOS is currently the most popular digital circuit technology. CMOS logic circuits are available

as standard SSI and MSI packages for use in conventional digital system design. CMOS is also

used in general-purpose VLSI circuits such as memory and microprocessors.

The CMOS Inverter is shown in figure 1. It consists of an N-channel MOSFET and a P-channel

MOSFET. The input is applied to the two gates. The substrate of each transistor is connected to

the source, and therefore no body effect for both transistors. When Vi is high, QN is ON and QP is

OFF. The output is low. If Vi is low, QN is OFF and QP is ON. The output is high with VOH.

Procedure:

1. Connect the circuit shown in Figure 1. Set the supply to VDD 5V.

2. Verify the table for different values of inputs.

3. Connect the circuit shown in Figure 2. Set the supply to VDD 5V.

4. Complete table 2 for different values of inputs.

Digital Circuit Design Lab

Page 94 of 109

CMOS as NAND Gate

VX1 VX2 Vf

0 0

0 1

1 0

1 1

Figure 1: CMOS as an Inverter

Figure 2: CMOS as a) NAND b) NOR

(a) (b)

CMOS as NOR Gate

VX1 VX2 Vf

0 0

0 1

1 0

1 1

Table 2: Truth Table verification for NAND and NOR

Table 1: Truth Table verification for NAND and NOR

Vi

QN

QP

Vi Y

Digital Circuit Design Lab

Page 95 of 109

Report:

Solve the following exercises on separate sheets of paper and submit your solution

3. Analyze the circuit of Fig.1.

4. Discuss the working principle of CMOS and NAND and NOR gate

5. Design Ex-OR and Ex-NOR using CMOS.

Digital Circuit Design Lab

Page 96 of 109

Experiment: 10

Experiment name: Introduction to EMITTER-COUPLED LOGIC (ECL)

Objective:

To demonstrate the operation of a simplified version of the ECL gate made by using discrete

components.

 Equipments: Power supply, digital multimeter, potentiometer (100 kΩ), diodes, transistors and

resistors.

 Background:

The first part of this experiment deals with the reference voltage used in the ECL circuit. The

experimentally measured value will be compared with the theoretically calculated value. In the

second part, a two-input ECL gate will be made excluding the emitter-follower output stages.

 Procedure:

1. Construct the circuit as shown in figure1. Adjust the potentiometer to get -5V at VEE.

2. Measure the reference voltage VR.

3. Construct the simplified ECL gate excluding the output stages as shown in Figure 2.

4. Let V(1) = -0.75 V and V(0) = -1.75 V. For different combinations of voltages, measure the

two output voltages and record their values in Table I. Also, measure the voltage at point E in the

circuit shown in Figure 2.

Digital Circuit Design Lab

Page 97 of 109

Digital Circuit Design Lab

Page 98 of 109

6. Using the results obtained in step 4 above , plot the voltage transfer characteristics (VO2 versus

VA). From these characteristics determine the noise margins by completing the entries in Table

III.

7. Disconnect the circuit and measure the resistances of all the resistors used in the experiment.

Record their values.

Discussion:

1. Compare the experimentally obtained value of reference voltage VR with the theoretically

calculated value. Explain the difference between the two values.

2. On the basis of measured voltages in Table I, identify which output is for OR operation and

which output is for NOR operation .

3. Using the measured voltages in Table I, determine the mode of operation of each transistor for

various combinations of input voltages. Compare your results with theoretically expected modes

of operation for these transistors.

4. Why the two levels of output voltage are not the same as the logic '0' and logic '1' voltages

used in the experiment. Explain

Report:

.

Solve the following exercises on separate sheets of paper and submit your solution

1. Analyze the circuit of Fig.2

2. Simulate circuit of Fig. 2, using PSPICE.

Digital Circuit Design Lab

Page 99 of 109

ANNEXURE I

Installing USB-Blaster driver software on Windows 7

1. Set the RUN/PROG switch to the RUN position.

2. Connect the supplied USB cable to the USB-Blaster port of the FPGA and to a USB port of

the PC. Also connect the 9V power supply adapter and turn the power switch ON.

At this point you should observe the following:

• All user LEDs are flashing

• All 7-segment displays are cycling through the numbers 0 to F

• The LCD display shows Welcome to the Altera DE2 Board

3. Open Device Manager.

Digital Circuit Design Lab

Page 100 of 109

4. Note that, USB-Blaster is listed under Other devices. Right click on it and select Update

Driver Software. Update Driver Software –USB-Blaster window will open up.

5. Select Browse my computer for driver software.

6. Find the location of USB-Blaster driver software from the installation directory of Quartus

II. It will be under

<your installation directory>\altera\90sp1\quartus\drivers\usb-blaster

forQuartus II 9.0 sp1 web edition.

Digital Circuit Design Lab

Page 101 of 109

7. Select Install this software anyway if Windows Security prompt appears.

8. After successful installation, Altera USB-Blaster will appear under Universal Serial Bus

controllers in Device Managerwindow:

Digital Circuit Design Lab

Page 102 of 109

Digital Circuit Design Lab

Page 103 of 109

ANNEXURE II

Using the LEDs and Switches
The DE2 board provides four pushbutton switches. Each of these switches is debounced using a

Schmitt Trigger circuit. The four outputs called KEY0, …, KEY3 of the Schmitt Trigger device

are connected directly to the Cyclone II FPGA. Each switch provides a high logic level (3.3

volts) when it is not pressed, and provides a low logic level (0 volts) when depressed. Since the

pushbutton switches are debounced, they are appropriate for use as clock or reset inputs in a

circuit. There are also 18 toggle switches (sliders) on the DE2 board. These switches are not

debounced, and are intended for use as level-sensitive data inputs to a circuit. Each switch is

connected directly to a pin on the Cyclone II FPGA. When a switch is in the DOWN position

(closest to the edge of the board) it provides a low logic level (0 volts) to the FPGA, and when

the switch is in the UP position it provides a high logic level (3.3 volts).

There are 27 user-controllable LEDs on the DE2 board. Eighteen red LEDs are situated above

the 18 toggle switches, and eight green LEDs are found above the pushbutton switches (the 9th

green LED is in the middle of the 7-segment displays). Each LED is driven directly by a pin on

the Cyclone II FPGA; driving its associated pin to a high logic level turns the LED on, and

driving the pin low turns it off.

 Figure1: Schematic diagram of push button and toggle switches

Digital Circuit Design Lab

Page 104 of 109

 Table1: Pin Assignments for toggle switches

Figure 2: Schematic diagram of LEDs

Digital Circuit Design Lab

Page 105 of 109

Using the 7-segment Displays
The DE2 Board has eight 7-segment displays. These displays are arranged into two pairs and a

group of four, with the intent of displaying numbers of various sizes. As indicated in the

schematic in Figure 4.6, the seven segments are connected to pins on the Cyclone II FPGA.

Applying a low logic level to a segment causes it to light up, and applying a high logic level

Table 2: Pin Assignments for push button switches

Table 3: Pin Assignments for LEDs

Digital Circuit Design Lab

Page 106 of 109

turns it off. Each segment in a display is identified by an index from 0 to 6, with the positions

given in Figure 4.7. Note that the dot in each display is unconnected and cannot be used. Table

4.4 shows the assignments of FPGA pins to the 7-segment displays.

Figure 3: Schematic diagram of 7 segment displays

Digital Circuit Design Lab

Page 107 of 109

Digital Circuit Design Lab

Page 108 of 109

Table 4: Pin diagram for seven segment displays

Digital Circuit Design Lab

Page 109 of 109

REFERENCE

1. Digital logic and computer design by M. Morris Mano.

2. Digital fundamentals by Thomas L. Floyd.

3. Fundamentals of Digital Logic with Verilog Design by Stephen

Brown and Zvonko Vranesic.

4. Digital systems principles and applications by Ronald J. Tocci.

	Table of Contents
	Experiment: 1
	Experiment: 2
	CAD System
	Experiment: 3
	Experiment: 4
	Experiment: 5
	Experiment: 6
	Experiment: 7
	Experiment: 8
	Experiment: 9
	Experiment: 10
	ANNEXURE I
	ANNEXURE II
	REFERENCE

